Bragg diffraction and diffuse scattering

Loss of translation – Lost in translation

 $u^{\scriptscriptstyle \flat}$

b UNIVERSITÄT BERN

CAL, May 2015

Overview

- Single crystal structure analysis, potential and limitations
- Why study diffuse scattering?
- Classifying disorder with some examples of disordered materials, pictures of their diffuse scattering and some simple rules
- An outline of a real-life case study:
 Qualitative consideration
 3D-Difference Pair Distribution Function
 Monte Carlo crystal builder
 Parameter opt. by differential evolution
 Some results

Single crystal structure analysis

CSD: >750'000 structures in Jan. 2015

(~20% disordered)

Disorder implies that not all unit cells are the same

Challenge: find the differences between them

Why study disorder diffuse scattering?

- Many materials owe whatever (interesting) properties they have to disordered arrangements of atoms and molecules
- Some materials are intentionally synthesized with disorder; verify their structure
- Disorder diffuse scattering tends to be weak compared to Bragg scattering. With synchrotron radiation, intense neutron beams and pixel detectors it can now be measured reliably
- No general protocol for determining disordered structures
- Interpretation of diffuse scattering is computationally intensive. With today's computing power this is no longer a major problem

Some simple rules for classifying disorder

Reciprocal space

- 1) Sharp Bragg reflections only
- 2) Sharp diffuse streaks

3) Sharp diffuse planes

4) Diffuse clouds

Direct space

- → 3D-periodic structure, ideal, no defects
- → 2D-periodic perpendicular to the streaks, disordered in streak directions
- → 1D-periodic perpendicular to the planes, disordered in directions within the plane
- → 0D-periodic, no fully ordered direction

Example I of disordered materials: Pigment Red 170

Constituent of spray paint, used in the car industry,

M. U. Schmidt, D. W. M. Hofmann, C. Buchsbaum, Angew. Chem. Int. Ed. 2006, 45, 1313 –1317

engineering problem: *Light-fastness*

diffuse lines

Example II of disordered materials: light up-conversion (NaLnF₄, doped)

- Single crystal X-ray structure: two Ln-sites, both C₃-symmetric

Na Ln F₄

 UV/VIS spectroscopy: two Ln-sites, one C₃-, one C₁-symmetric

Example III of disordered materials: host-guest inclusion compound, SHG active

- Superposition [R-PHTP+S-PHTP]/2
- 5-fold positional disorder of NPP

Perhydrotriphenylene₂ * 1-(4-Nitrophenyl)piperazine₅

More simple rules

Substitutional disorder, where is the information?

In direct space:

 Two or more different atoms, ions or molecules occupy the same site in the unit cell

In reciprocal space:

- Intensity governed by difference of atomic ionic or molecular form factors.
- Modulation of diffuse intensity indicates correlations between disordered sites

Example IV of disordered materials: Prussian blue analog of Mn, Mn₃[Mn(CN)₆]₂(H₂O)₆,

(mixed-valence and magnetic properties)

-NaCl lattice: 3 Mn^{2+} occupy edges, $2\{Mn^{3+}(CN^{-})_{6}\}$ and $(H_2O)_6$ clusters occupy corners and face centres of cube. Difference form factor $\Delta f^2 = |f[Mn(CN)_6] - f[(H2O)_6|^2$ and observed scattering in hk0-layer

1-(4-Nitrophenyl) piperazine included in perhydrotriphenylene (PHTP) shows SHG

Average structure:

- Racemic disorder of the PHTP host (Spgr Cmcm)
- Positional disorder of the guest along the tunnel (Spgr Cmc2₁)

O. König, H.B.Bürgi, T. Armbruster, J. Hulliger, Th. Weber, JACS, 119 (1997) 10632

Assignment of diffuse scattering to host and guest and to different kinds of disorder

T. Weber, M. Estermann, H.B. Bürgi, Acta Cryst., B57 (2001) 579

Beyond simple rules

- Layer stacking
 Different layer sequences ↔ different energies
- Loss of translation Difference 3D Pair Distriution function, 3D-ΔPDF
- Monte Carlo simulations of disordered model crystals
- optimization of model parameters global optimization methods (differential evolution, genetic algorithms, swarm optimization)

Bond alternation in benzenoid structures

Tris(bicyclo-[2.1.1]hexeno)-benzene

- Structure solved in subcell from Bragg reflections only (arrows)
- Pronounced
 bond alternation
 of about 0.09 Å
 (R1 ~ 0.03)
- Disordered
 stacking of
 ordered
 molecular layers

H.-B. Bürgi, K.K. Baldridge, K.Hardcastle, N.L. Frank, P. Gantzel, J.S. Siegel, J. Ziller. Angew. Chem. Int. Ed. 34 (1995) 1454-1456.

Stacking disorder of C₁₈ H₁₈

Genetic algorithm for optimisation of model parameters

Parameter optimization: finding lowest minimum on Fitness surface by Differential evolution (schematic)

Th. Weber, H.-B. Bürgi, Acta Crystallogr. A58 (2002) 526-540. H.-B. Bürgi, J. Hauser, Th. Weber, R.B. Neder, Crystal Growth & Design 5 (2005) 2073-2083

Building the model: four layers

Case study: Upconversion phosphors

NaLaF₄ : Yb³⁺, Er³⁺ and NaGdF₄ : Yb³⁺, Er³⁺ Among best materials for NIR \rightarrow VIS, green \rightarrow blue conversion

Polarized absorption

spectra

- NaGdF₄:10% Er³⁺ (right): two sites: A (C_{3h}), B (C₁)
- LaCl₃:0.1% Er³⁺ (left): one site (*C*_{3*h*})

NaLnF₄, diffuse scattering I

- Regular array of Bragg peaks
- in addition:
 sharp, horizontal
 lines at half-integer L
- translational period along c doubled
- Columns with Ln...Na...Ln...Na
- strictly alternating along c

NaLnF₄, diffuse scattering II

- honeycomb pattern of diffuse scattering
- Ordered surrounded by disordered columns

- Coulomb frustration

Quantitative approach I: 3D-ΔPDF

 The 3D Pair Distribution Function (3D-ΔPDF) is the FT of the total scattered intensity:

3D-PDF(u v w) = $\int (I_{Bragg} + I_{diff}) \exp[2\pi i(hu+kv+lw)] dh dk dl$ = P(u v w) + 3D- Δ PDF

- The 3D-ΔPDF(u v w)is the difference between the non-periodic 3D-PDF of the disordered, non-periodic crystal and the Patterson function P(u v w) of the periodic average structure
- $3D-\Delta PDF(u \vee w) = 3D-PDF(u \vee w) P(u \vee w)$

NaLnF₄, diffuse scattering II

- honeycomb pattern of diffuse scattering
- Ordered surrounded by disordered columns

- Coulomb frustration

Example: Na/La translation vector (a, 0, 0)

Vectors between the mixed Na/La columns one a-translation apart

 $Z_{La} = 57, Z_{Na} = 11, c_{La} = c_{Na} = 0.5 p_{Na...La(100)} = 0.6$

Na...Na(100)
$$[c_{Na} \cdot p_{Na...Na(100)} - c_{Na} \cdot c_{Na}] \cdot Z_{Na} \cdot Z_{Na} = -6.1$$
Na...La(100) $[c_{Na} \cdot p_{Na...La(100)} - c_{Na} \cdot c_{La}] \cdot Z_{Na} \cdot Z_{La} = 31.4$ La....Na(100) $[c_{La} \cdot p_{La...Na(100)} - c_{La} \cdot c_{Na}] \cdot Z_{La} \cdot Z_{Na} = 31.4$ La....La(100) $[c_{La} \cdot p_{La...La(100)} - c_{La} \cdot c_{La}] \cdot Z_{La} \cdot Z_{Ia} = -162.5$ SUM $= -105.8$

Conclusion: If La prefers a Na neighbor at a distance of (a 0 0), the peak at $3D-\Delta PDF$ (1 0 0) should be negative.

Example of a 3D-ΔPDF for NaLnF4

- Origin in center, a and b indicated on the left
- Note the positive (red) and negative (blue) peaks
 - 3D-ΔPDF can be parametrized in terms of interatomic vectors
 r_{mn}(uvw) between
- atoms m and n which are uvw unit cells apart and their probability of occurrence which is the difference between those in the disordered and average structures: p_{mn}(uvw)
 C_mC_n.

Comparison experiment – model - difference

Quantitative approach II: Monte Carlo crystal simulation

- Model parameters: (Ising parameters), geometrical parameters (atomic or molecular displacements), Atomic Displacement
 Parameters
- Probabilistic crystal builder
- Simultaneous construction of up to MANY individual CRYSTALS from MANY different parameters sets (= genes), each with 10³ – 10⁶ unit cells, calculation of intensities
- Optimization of parameters by differential evolution.
 Fitness selection against experimental intensities (R)

Quantitative approach II: MC simulations

- Monte Carlo crystal builder
- Model parameters: interaction between Na...La 'up' and
 'down' columns, displacements of atoms from average positions
- Simultaneous construction unit cell by unit cell of N random crystals (phenotypes) from N different parameter sets (= genes), each with thousands of Na...La-columns
- 'Energy minimization'
- Calculation of intensities, comparison with experiment
- Optimization of parameters by differential evolution. Fitness selection against experimental intensities (R)

Parallelization of parameter optimization

ZODS

Zürich – Oak Ridge Disorder Simulations

Some Results

Progress of refinement, Correlations between columns, I_{obs}-I_{model},

NaLnF₄, diffuse scattering III

- F⁻ will not want to be midway between
 Ln³⁺ and Na⁺, shifted towards Ln³⁺ !
- disordered Ln³⁺ : local **C**_{3h} symmetry
- Ln³⁺ in ordered column:
 C₁ symmetry!

- Explains spectroscopic observation, provides a basis for modeling the high efficiency of upconversion

A. Aebischer, M. Hostettler, J. Hauser, K. Krämer, Th. Weber, H. U. Güdel, H.-B. Bürgi, Angew. Chemie Int. Ed. **45** (2006) 2802

A summary

- 1) Do the best experiment possible, both on Bragg AND diffuse scattering
 - high intensity primary beam (Synchrotrons)
 - low(no)-noise detector (Pilatus)
- 2) Find best average structure and scrutinize for features that contradict the principles of chemistry and physics
- Qualitative interpretation of diffuse scattering with simple (analytical) models (NaLnF₄)
- 4) Quantitative model of disorder and parameter optimization by numerical methods
- 5) Evaluate local structure

