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Overview

− Single crystal structure analysis, potential and limitations 

− Why study diffuse scattering?

− Classifying disorder with some examples of disordered 
materials, pictures of their diffuse scattering and some 
simple rules

− An outline of a real-life case study:                                           
Qualitative consideration
3D-Difference Pair Distribution Function
Monte Carlo crystal builder 
Parameter opt. by differential evolution  
Some results



Single crystal structure analysis

CSD: 
>750‘000 

structures
in Jan. 2015 

(~20% 
disordered)

Disorder implies that not all unit cells are the same

Challenge: find the differences between them



Why study disorder diffuse scattering?

− Many materials owe whatever (interesting) properties they have to
disordered arrangements of atoms and molecules

− Some materials are intentionally synthesized with disorder; 
verify their structure

− Disorder diffuse scattering tends to be weak compared to
Bragg scattering. With synchrotron radiation, intense neutron   
beams and pixel detectors it can now be measured reliably

− No general protocol for determining disordered structures

− Interpretation of diffuse scattering is computationally
intensive. With today’s computing power this is no 
longer a major problem 



Some simple rules for classifying disorder
Reciprocal space Direct space

1) Sharp Bragg reflections only →   3D-periodic structure, ideal, 
no defects

2) Sharp diffuse streaks →    2D-periodic perpendicular
to the streaks, disordered
in streak directions

3) Sharp diffuse planes →   1D-periodic perpendicular
to the planes, disordered
in directions within the plane

4) Diffuse clouds →    0D-periodic, no fully ordered
direction



Example I of disordered materials:
Pigment Red 170

Constituent of spray paint,               engineering problem:
used in the car industry, 

diffuse lines

Light-fastness

M. U. Schmidt, D. W. M. Hofmann,
C. Buchsbaum, Angew. Chem. Int. Ed. 
2006, 45, 1313 –1317



2c

2Na/2Ln Na/2
Ln/2 Ln

Example II of disordered materials:
light  up-conversion (NaLnF4, doped)

- Single crystal X-ray structure:
two Ln-sites, both C3-symmetric

- UV/VIS spectroscopy:
two Ln-sites, one C3-, one C1-symmetric

Na Ln F4

H

K



Example III of disordered materials:
host-guest inclusion compound, SHG active

- Superposition 
[R-PHTP+S-PHTP]/2

- 5-fold positional
disorder of NPP

Perhydrotriphenylene2 *
1-(4-Nitrophenyl)piperazine5



More simple rules

Substitutional disorder, where is the information?

In direct space:

− Two or more different atoms, ions or molecules occupy
the same site in the unit cell

In reciprocal space:

- Intensity governed by difference of atomic ionic or
molecular form
factors.

- Modulation of diffuse intensity indicates correlations
between disordered sites



Example IV of disordered materials: 
Prussian blue analog of Mn, Mn3[Mn(CN)6]2(H2O)6,

(mixed-valence and magnetic properties) 

-NaCl lattice: 3 Mn2+ occupy
edges, 2{Mn3+(CN-)6} and
(H2O)6 clusters occupy corners
and face centres of cube. 

(H2O)6
2{Mn3+(CN)6}
3{Mn2+}

H K 0

Difference form factor
Δf2 = |f[Mn(CN)6] - f[(H2O)6|2

and observed scattering in 
hk0-layer



1-(4-Nitrophenyl) piperazine included in 
perhydrotriphenylene (PHTP) shows SHG

O. König, H.B.Bürgi, T. Armbruster, J. Hulliger, Th. Weber, JACS, 119 (1997) 10632
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Average structure:

- Racemic disorder of the PHTP host (Spgr Cmcm) 
- Positional disorder of the guest along the tunnel

(Spgr Cmc21) 

hk(-2)

hk(1.2)



Assignment of diffuse scattering to host and guest 
and to different kinds of disorder

T. Weber, M. Estermann, H.B. Bürgi, Acta Cryst., B57 (2001) 579

Bragg-layer Satellite layer
hk(-2) hk(1.2)
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disorder

Disorder 
of guest
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equally 



Beyond simple rules

- Layer stacking
Different layer sequences ↔ different energies

- Loss of translation
Difference 3D Pair Distriution function, 3D-ΔPDF

- Monte Carlo simulations of disordered model crystals

- optimization of model parameters
global optimization methods (differential evolution,
genetic algorithms, swarm optimization)



Bond alternation in benzenoid structures

- Structure solved in subcell from Bragg
reflections
only (arrows)

- Pronounced 
bond alternation 
of about 0.09 Å 
(R1 ~ 0.03)

- Disordered 
stacking of 
ordered
molecular layers

H.-B. Bürgi, K.K. Baldridge, K.Hardcastle, N.L. Frank, P. Gantzel, J.S. Siegel, J. Ziller. 
Angew. Chem. Int. Ed. 34 (1995) 1454-1456.

Tris(bicyclo-[2.1.1]hexeno)-benzene



e1=0.08
e2=0.56

1/3

0.46

c=0.46

t=0.46

e1=0.08

0.22

Stacking disorder of C18 H18

H.-B. Bürgi, M. Hostettler, H. Birkedal, D. Schwarzenbach,  Z. Krist., 220 (2005) 1066-1075

Three ways to stack any layer, 
each with a different probability



Genetic algorithm for 
optimisation of model parameters

Th. Weber, H.-B. Bürgi, Acta Crystallogr. A58 (2002) 526-540. 
H.-B. Bürgi, J. Hauser, Th. Weber, R.B. Neder, Crystal Growth & Design 5 (2005) 2073-2083

Parameter optimization: 
finding lowest minimum on 
Fitness surface by Differential 
evolution (schematic)

R



Building the model: four layers

0.560.54(5)e2

0.080.075(8)e1

0.460.47(6)t

0.460.46(5)c

analyticaldif. evol.

Model Mean R (%)

2 layers 43.0(4)

3 layers 19.2(2)

4 layers 18.3(2)



Case study: Upconversion phosphors

NaLaF4 : Yb3+, Er3+ and 
NaGdF4 : Yb3+, Er3+

Among best materials for 
NIR → VIS, green → blue 
conversion 

Polarized absorption 
spectra
- NaGdF4:10% Er3+ (right):

two sites: A (C3h), B (C1)
- LaCl3:0.1% Er3+ (left): 

one site (C3h) 
LaCl3:0.1% Er3+ NaGdF4:10% Er3+



NaLnF4, diffuse 
scattering I

- Regular array of  
Bragg peaks

- in addition:
sharp, horizontal
lines at half-integer L

Ln

Ln

Ln

2Na/2Ln Na/2
Ln/2

- translational period 
along c doubled

- Columns with 
Ln…Na…Ln…Na

- strictly alternating
along c

Na

Ln

2c

L
2.5
1.5
0.5

-0.5

L

L
4
3
2
1
0



NaLnF4, diffuse 
scattering II

- honeycomb pattern of 
diffuse scatteringH

K

Ln

Na..Ln

Na..Ln

Ln..Na

- Ordered surrounded by
disordered columns

Ln |             |            |
| Ln Ln Na

Ln |            |            |
| Na         Na Ln

Ln |            |            |
| Ln Ln Na

Ln |            |            |

- Coulomb frustration



Quantitative approach I: 3D-ΔPDF

• The 3D Pair Distribution Function (3D-ΔPDF) is the FT of the total 
scattered intensity:

3D-PDF(u v w) = ∫(IBragg + Idiff) exp[2πi(hu+kv+lw)] dh dk dl
= P(u v w) + 3D-ΔPDF

• The 3D-ΔPDF(u v w)is the difference between the non-periodic
3D-PDF of the disordered, non-periodic crystal and the Patterson 
function P(u v w) of the periodic average structure

• 3D-ΔPDF(u v w) = 3D-PDF(u v w) – P(u v w)



NaLnF4, diffuse 
scattering II

- honeycomb pattern of 
diffuse scatteringH

K

Ln

Na..Ln

Na..Ln

Ln..Na

- Ordered surrounded by
disordered columns

Ln |             |            |
| Ln Ln Na

Ln |            |            |
| Na         Na Ln

Ln |            |            |
| Ln Ln Na

Ln |            |            |

- Coulomb frustration



Example: Na/La 
translation vector

(a, 0, 0)

Vectors between the mixed Na/La columns one a-translation apart
ZLa = 57, ZNa = 11,          cLa = cNa = 0.5          pNa…La(100) = 0.6

Na…Na(100) [cNa·pNa…Na(100) - cNa·cNa]·ZNa ·ZNa =      -6.1
Na…La(100)            [cNa·pNa…La(100) - cNa·cLa]·ZNa·ZLa =     31.4
La….Na(100) [cLa·pLa…Na(100) - cLa ·cNa]·ZLa·ZNa =     31.4
La….La(100) [cLa·pLa…La(100) - cLa·cLa ]·ZLa·Zla = -162.5

SUM = -105.8
Conclusion: If La prefers a Na neighbor at a distance of (a 0 0), the
peak at 3D-ΔPDF (1 0 0) should be negative.

Ln

Na..Ln

Na..Ln

Ln..Na



Example of a 3D-ΔPDF for NaLnF4

− Origin in center, a and b indicated
on the left

− Note the positive (red) and
negative (blue) peaks

− 3D-ΔPDF can be parametrized in 
terms of interatomic vectors

− rmn(uvw) between

a

b

− atoms m and n which are uvw unit cells apart and their
probability of occurence which is the difference between
those in the disordered and average structures: pmn(uvw) 
– cmcn.

(uv0)



Comparison experiment – model - difference

Experiment                     Model                     Difference

a

b



Quantitative approach II: 
Monte Carlo crystal simulation

− Model parameters: (Ising parameters), geometrical parameters
(atomic or molecular displacements), Atomic Displacement
Parameters

− Probabilistic crystal builder

− Simultaneous construction of up to MANY individual CRYSTALS
from MANY different parameters sets (= genes), each with
103 – 106 unit cells, calculation of intensities

− Optimization of parameters by differential evolution. 
Fitness selection against experimental intensities (R)



Quantitative approach II: MC simulations

- Monte Carlo crystal builder

- Model parameters: interaction between Na…La ‘up‘ and
‘down‘ columns, displacements of atoms from average positions

- Simultaneous construction – unit cell by unit cell –
of N random crystals (phenotypes) from N different parameter
sets (= genes), each with thousands of Na…La-columns

- ‘Energy minimization’

- Calculation of intensities, comparison with experiment

- Optimization of parameters by differential evolution. 
Fitness selection against experimental intensities (R)



Parallelization of parameter optimization

Global Optimization – population based method

p1 p2 p3 p4 p5 p6 pn
...

pn[2] pn[3] pn[4]pn[1]

Initialize crystal

Equilibrate

Calc. Intensities

many 
sets of
parameters many disordered 

Crystals for the 
same parameters

Courtesy of Michal Chodkiewicz



ZODS
Zürich – Oak Ridge Disorder Simulations

Courtesy of Michal Chodkiewicz

H

K

MODELEXPERIMENT



Some Results
Progress of refinement, Correlations between columns, Iobs-Imodel, 

Na/-

Ln/Ln

Ln/Na

p = 1.00
Na/Ln

p = 0.61
Ln/Na

p = 0.51

Ln/Na

p = 0.57
Na/Ln

p = 0.61

Ln/Ln



- Fˉ will not want to be
midway between 
Ln3+ and Na+,
shifted towards Ln3+ !

- disordered Ln3+ : 
local C3h symmetry 

- Ln3+ in ordered column: 
C1 symmetry! 

- Explains spectroscopic observation, provides a basis for
modeling the high efficiency of upconversion

NaLnF4, diffuse scattering III

A. Aebischer, M. Hostettler, J. Hauser, K. Krämer, Th. Weber,
H. U. Güdel, H.-B. Bürgi, Angew. Chemie Int. Ed. 45 (2006) 2802

Na

Ln

Ln

Ln

Ln



A summary
1) Do the best experiment possible, both on

Bragg AND diffuse scattering
- high intensity primary beam (Synchrotrons)
- low(no)-noise detector (Pilatus)

2) Find best average structure and scrutinize for
features that contradict the principles of
chemistry and physics

-----------------------------------------------------

3) Qualitative interpretation of diffuse scattering
with simple (analytical) models (NaLnF4)

4) Quantitative model of disorder and parameter
optimization by numerical methods

5) Evaluate local structure

Na

Ln
Ln

Ln

Ln
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