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Abstract

An account is given of various classifications of three-periodic nets. It is convenient to classify nets according to the nature of their

maximum-symmetry embeddings. Other classifications, particularly in terms of the tilings that carry the nets, are also discussed.

Although there is an infinity of possible nets, for certain types the number of possibilities is limited—there are for example exactly

five regular nets. An account is given of the enumerations of various types of special structures such as sphere packings, the nets of

simple tilings and self-dual tilings. Some databases of relevant structures and computer programs are described.

r 2005 Elsevier Inc. All rights reserved.
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For he that beats the bush the bird not gets,

But who sits still and holdeth fast the nets.

Edward de Vere [1]
1. Introduction

In an introductory article [2] to an earlier special issue
of the Journal of Solid State Chemistry devoted to ‘‘The
Design of Solids from Molecular Building Blocks’’ [3] an
account was given of the more important periodic
structures (‘‘nets’’) for the design and synthesis of
extended solid structures. It has been established [4]
that these ‘‘default’’ structures are overwhelmingly
preferred by nature in the construction of crystals. We
revisit the question of why they are special here. But
there are also outliers—less common topologies that
e front matter r 2005 Elsevier Inc. All rights reserved.
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arise occasionally. What of them? What is their nature,
and how many of them are there? How might they be
classified? What is their relevance to crystal design and
synthesis (reticular chemistry [5] and crystal engineering
[6])? This article is an attempt to answer some of these
questions also. The treatment is informal and is intended
to serve as a tutorial for those interested in the design,
synthesis and analysis of structures.
2. Basic ideas and definitions

Definitions of terms from graph theory and their
application to nets are given in a companion contribu-
tion [7]. That paper might also be consulted for topics
concerning how one specifies the topology of a net
(quotient graph and vector representation) and deter-
mines intrinsic properties such as combinatorial sym-
metry. There also one will find definitions of terms such
as ring and vertex symbol as used in the context of nets.

www.elsevier.com/locate/jssc
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Here we are more concerned with recognition of
different types of net and their classification.
The term ‘‘net’’ as used in this article, and generally in

crystal chemistry, refers to a periodic connected simple
graph. Familiar examples are the nets of zeolite frame-
works in which the tetrahedral (T) atoms are the vertices
and –O– links act as the edges. These nets are examples
of four-coordinated nets (each vertex is common to four
edges, and thus has four neighbors in the graph-theory
sense).
An embedding of a net is a realization in space in

which coordinates can be assigned to each vertex and a
metric to the lattice (‘‘lattice parameters’’). In a faithful

embedding edges do not intersect or touch vertices, and
the vertices are distinct points.
A sphere packing is a special kind of net that has an

embedding in which all the edges are of equal length and
correspond to the shortest distances between vertices.
Note that we do not require the vertices to be equivalent
(related by symmetry) in sphere packings in general, but,
unless explicitly stated to the contrary, we assume all
spheres to have the same diameter.
An equilibrium placement of a net assigns barycentric

coordinates to the vertices. By this we mean that each
vertex has coordinates that are the average of the
coordinates of its neighbors. Once an origin is chosen,
barycentric coordinates are unique for a given choice of
basis vectors. Such a placement is valuable in determin-
ing properties such as combinatorial symmetry [8].
Collisions occur when two vertices have the same
barycentric coordinates. Clearly this happens if, for
example, two vertices have the same neighbors—for
further discussion of collisions see [8].
In what follows, we consider only nets without

collisions, as nets with collisions are so far very rare in
crystal chemistry. An important result is that the
combinatorial (topological) symmetry of a periodic net
without collisions is isomorphic to a space group, and
this space group is the symmetry of a maximum-
symmetry embedding [9].
Nets are often identified by a symbol such as dia or

dia-a. These are an attempt at providing universal
identifiers for nets and are discussed further below. They
should not be confused with the upper-case three letter
codes assigned to zeolite framework types.
3. Embeddings

Usually in describing a net, parameters are given
appropriate to a maximum-symmetry embedding. Ide-
ally also the shortest distances are all equal (for
convenience unity in the units of the lattice parameters)
and correspond to the edges of the net. This ideal
situation is not always possible however, as can be seen
by considering a generic infinite net without symmetry.
Let the average coordination number be Z, then there
are Z/2 edges per vertex. Each vertex has three
coordinates (x, y, z), so if Z46 there are more
constraints (edge lengths) than degrees of freedom
(coordinates) and there is no solution for equal edges
possible. In fact, as the equations for edge lengths are
non-linear in coordinates, there is no guarantee that
there is a solution even for Zp6. Of course we are not
dealing with generic structures, but rather with transla-
tional and, usually, other symmetries, so the problem is
quite complicated. There are several cases to consider
which we list first, then give examples:
1.
 For the simple nets most common in crystal
chemistry the maximum-symmetry embedding is a
sphere packing. There are three cases:
a. The coordinates and unit cell shape are fixed by

symmetry in the maximum-symmetry embedding.
b. In other cases there are still degrees of freedom

remaining. It is common [10,11] in this case to
report a structure that is a minimum of density
(maximum cell volume) subject to the constraint of
equal edge lengths which can be taken as unity.

c. Again there are free parameters, but the minimum
density configuration corresponds to a structure
with more contacts. See e.g. [11] where many
examples are given. Structures of this type have
been of less importance in crystal chemistry in the
past.
2.
 The maximum-symmetry embedding corresponds to
a sphere packing with more contacts than the
coordination number, n, but n of those contacts
correspond to edges; there are two cases:
a. There is an embedding as an n-coordinated sphere

packing of lower symmetry in which the n edges
correspond to edges. Structures of this type are so
far rather rare.

b. There is not an embedding as above (strictly we
should say that such an embedding cannot be
found, proving one does not exist might be
difficult). This case is more common than might
be supposed.
3.
 The maximum-symmetry embedding is a sphere
packing with fewer contacts than the coordination
number, n; but the n shortest distances correspond to
the edges of the n-coordinated net; there are three
cases:
a. There is a lower-symmetry embedding with equal

edge lengths and edges still corresponding to
shortest distances between vertices.

b. There is no embedding with equal edge lengths.
c. There is an embedding with shortest distances

equal to edges, but they cannot all be made equal
and remain shortest distances.
4.
 There may be no embedding with shortest distances
corresponding to edges. This is in fact the case for the
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vast majority of nets (see below). Until recently, they
were not recognized in crystal chemistry, as normally
bonds (corresponding to edges of nets) are formed to
nearest neighbors, but, with flexible linkers instead of
bonds as the edges of nets, they are beginning to
appear.
5.
 There may be no faithful embedding in the max-
imum-symmetry conformation because the symmetry
will require edges to intersect [8]. There is always a
lower-symmetry embedding—all graphs have a faith-
ful embedding in three-dimensional Euclidean space.
These lower-symmetry embeddings may be any one
of types described above in 1–4 (but of course not of
maximum symmetry) and there may be several
equally ‘‘good’’.

4. Example of embeddings
1.
 Maximum-symmetry sphere packings:
a. With fixed coordinates. In the cubic diamond net

(dia) the atoms are on fixed positions (1
8
, 1
8
, 1
8
, etc.).

There is one edge length which determines the unit
cell parameter. In the cubic net (fau) of the zeolite
faujasite the atoms are in general positions (x, y,
z), but now four independent edge lengths which
determine the coordinates and unit cell parameter.

b. Sphere packings at minimum density. The familiar
net (crb) of the B atoms in CrB4 is an example [12].
It has symmetry I4/mmm with vertices in positions
x, x, 0, etc. There are three parameters: x and the
unit cell edges a and c but only two independent
edge lengths, so one degree of freedom after fixing
the edge lengths, but before minimizing the density.

c. Sphere packings without minimum density. An
example from Ref. [11] is the cubic sphere packing
Fig. 1. Two embeddings of the cds net: (a) maxim
3/8/c3. This has symmetry Im3̄m and one kind of
vertex in general positions (say) 0.3500, 0.1768,
0.0732, etc. and three edges, so one degree of
freedom remaining after fixing the edge lengths.
The minimum density conformation (0.4268,
0.1768, 0.0732) corresponds to a four-coordinated
structure 4/4/c18 (wse).
um
2.
 Maximum symmetry is a sphere packing of too high
coordination number:
a. There is a lower-symmetry sphere packing of the

right coordination number. An important example
is the structure (cds) named for the 4-coordinated
net of CdSO4 [13]. The maximum-symmetry form
has symmetry P42/mmc and in this configuration
each vertex has six equidistant neighbors. How-
ever, there are lower-symmetry forms [12] with
only four geometric neighbors, the simplest of
which [14] has symmetry P42/mbc with a0 ¼ 2a,
c0 ¼ c as shown in Fig. 1.

b. There is not a lower-symmetry sphere packing of

the right coordination number. In Fig. 2 we give
two examples of six-coordinated structures in
which the vertices occupy the points of a bcc

lattice of edge a. The first net (bcs) has symmetry
Ia3̄d with a0 ¼ 2a and the vertices are on fixed
positions (0, 0, 0, etc.) It is an important
example of a semiregular net (see below) [15].
The second, rob, is derived from the topology of a
crystal structure [16]. The symmetry is Cccm with
a0 ¼ a, b0

¼ c0 ¼
p
2a. In deriving these nets 1

4
of

the edges of body-centered cubic (bcu) are
eliminated. In bcs these lie along all four /1 1 1S
directions, in rob they lie along just two such
directions.
Another important example is the ‘‘quartz
dual’’ structure qzd discussed elsewhere [13]. In
symmetry P42/mmc, (b) P42/mbc.
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Fig. 2. (a) The net bcs, (b) the net rob. Blue spheres outline a unit of the bcc lattice (net bcu).

Fig. 3. The net fcb: (a) as a sphere packing with symmetry I23, (b) in a maximum-symmetry embedding I432.
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this four-coordinated net the vertices are at the
positions of the nodes of a hexagonal lattice.
3.
 Maximum symmetry is a sphere packing of too-low
coordination number:
a. There is a lower-symmetry embedding as a sphere

packing. An example (Fig. 3) is the five-coordi-
nated net fcb which has symmetry I432 with
vertices in positions x; 1

4
; 1
2
þ x, etc. and thus two

parameters (a and x), but three independent edge
lengths which cannot be made all equal. However
in an embedding in I23 the vertices are in general
positions x, y, z and again three independent edge
lengths, and an embedding is possible with all
edges equal. The I23 structure is the sphere
packing 5/3/c13 of Fischer [11]. A second example
(fnm, Fig. 4) is also a five-coordinated sphere
packing 5/5/c1. As a sphere packing the symmetry
is I 4̄3d with vertices in positions x, x, x and two
kinds of edge; there are two parameters (a and x),
In the maximum symmetry (Ia3̄d) the vertices are
in special positions 1
8
; 1
8
; 1
8
, etc. but still two edge

lengths which cannot be made equal. This net is an
example of what we call a ‘‘rod net’’ [17] as there
are straight non-intersecting rods of edges. It is
also a rare example of a net with only five-rings;
the vertex symbol is 5.5.5.52.52.52.52.52.52.*.

b. There is not a lower-symmetry embedding as a

sphere packing. A simple example is the case of the
body-centered cubic lattice considered as a 14-
coordinated structure (bcu) as shown in Fig. 5.
There are of course no sphere packings for n412.
For lower-coordination numbers the absence of an
embedding as a sphere packing will be difficult to
prove in general. An interesting case is the six-
coordinated net (mep-e) of the O atoms in the
mineral melanophlogite. This is a form of silica
(with organic inclusions) so the O atoms form a
framework of tetrahedra linked by corners. The
maximum-symmetry form is cubic, Pm3̄n, and
there are seven parameters (including the cell edge)
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Fig. 4. The net fnm (a) as a five-coordinated sphere packing with symmetry I 4̄3d and (b) with maximum symmetry, Ia3̄d.

Fig. 5. The 14-coordinated net bcu-x. The blue and yellow edges are

necessarily of different length.
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and eight edges. There is no solution for equal
edges, but one can make the edges ‘‘almost’’ equal
(spread of less than 1%). We do not know if there
is a lower-symmetry embedding with all edges
equal. The net mep of the linked Si atoms (centers
of the tetrahedra) is discussed as a tiling below:

c. There is not a lower-symmetry embedding as a

sphere packing, but edges can be made equal. An
example is provided by the seven-coordinated net
(gar-e) of the anions in the cubic garnet structure.
Here there are four parameters (x, y, z, and a) and
four independent edges. If the edges are made all
equal it is found that there is one shorter
intervertex distance (0.92 times the edge length),
however configurations can be found with the
seven shortest intervertex distances corresponding
to edges; those coordinates are given in the RCSR
database described below. (The coordinates for all
equal edges are 0.9578, 0.0589, 0.1488.) The
structure is shown as corner-sharing octahedra
and tetrahedra in Fig. 6. The net of the centers of
the linked polyhedra is a (4,6)-coordinated net
(gar).
4.
 No embedding with shortest distances corresponding
to edges.
As a first example we illustrate in Fig. 7 the net tcb

which was found recently by three independent
groups [18–20] in metal-organic frameworks (MOFs).
The symmetry is Pnna and the vertices of the net are
in positions 4 a: 0, 0, 0, etc. To complete the
specification of the net we have to specify the two
independent bonds which are from 0, 0, 0 to 0, 1

2
, �1

2

and to 1
2
, 1, 0. All the shortest ring at each angle in

this net are eight-rings—the vertex symbol is
82 � 82 � 85 � 85 � 85 � 85.
A second net (ten) was found (by MDF and MMJT)
in a search for possible zeolite nets (see below). It has
symmetry I23 and is also illustrated in Fig. 7. The
vertices are in general position positions x, y, z and
the edges are from x, y, z to �x, 1�y, z; �x, �y, z;
and 1

2
� z, x � 1

2
, 1
2
� y. All the shortest rings at each

angle in this net are 10-rings—the vertex symbol is
107 � 107 � 109 � 1013 � 1012 � 1012.
A 4-coordinated net (elv) with vertex symbol
11 � 112 � 11 � 112 � 112 � 113 was found in the same
search. The symmetry is again I23 and edges are
from x, y, z to �1

2
� y, 11

2
� z, 1

2
þ x; x, �y, 1�z; and

1�x, 1�y, z. In its minimum density conformation
each vertex has 88 vertices closer than the ones to
which it is linked.
5.
 No embedding in maximum symmetry. Fig. 8 gives two
examples (ulk and fcw with symmetry Im3̄m and
Pn3̄m, respectively) in which edges of necessity
intersect in maximum-symmetry configurations, but
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Fig. 6. The garnet anion net gar-e projected (a) on (1 0 0) and (b) on (1 1 1).

Fig. 7. (a) The net tcb, (b) ten.
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that are uninodal sphere packings (4/3/c13 and 5/3/
c39 [11]) in lower-symmetry (Fd3̄c in both cases)
embeddings. A related example, Fig. 9, is provided by
the anion net (mog-e) of the moganite form of silica.
With symmetry Ibam this can be made with regular
SiO4 tetrahedra. However, the combinatorial sym-
metry is Cmmm with a unit cell half the size
(c0 ¼ c=2), and with this symmetry the ‘‘tetrahedra’’
are forced to be planar.
For convenience the nets mentioned in this article are
listed by embeddability type in Table 1. Most are types
1a or 1b as these are generally the most interesting in
crystal chemistry, but in the grand scheme of things type
4 must predominate.
5. Nets and tilings

Covering the plane with equal squares as in Fig. 10 is
an example of a tiling in which the tiles are edge to edge.
The edges and vertices of the tiling form a two-periodic
net, familiar as the square lattice 44. We say that this net
is carried by the tiling. Note that the tiling correspond-
ing to the face of a brick wall is really a 63 tiling by
hexagons if we require each edge to be common to
exactly two tiles (Fig. 10).
In three dimensions the tiles become generalized

polyhedra or cages. A familiar example is filling space
by cubes sharing faces. Another example (Fig. 11) is
provided by the subdivision of the diamond structure
into adamantine units; in this case some of the vertices
of the cage are divalent (belong to only two edges).
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Fig. 8. (a) The net ulk as a sphere packing and (b) in a maximum-symmetry embedding. (c) The net fcw as a sphere packing and (d) in a maximum-

symmetry embedding. Note that the edges that lie inside a square in (b) or a planar hexagon in (d) intersect—their apparent non-intersection is an

artifact of the drawing program.
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Note that, unless explicitly stated to the contrary,
when we refer to a tiling it is always face-to-face, i.e.
each face is common to exactly two tiles, and a pair of
tiles have at most one face in common. Just as in two
dimensions, a periodic three-dimensional tiling carries a
net. A given tiling carries a unique net, but a net may
have more than one (even an infinity) of tilings that
carry it. However we have defined [7,21] a natural tiling
that is generally (but not always!) unique.
Every tiling has a dual tiling derived in the following

way. Put new vertices in the center of each old tile and
connect them to new vertices with edges passing through
the faces of the old tiles. Then complete the new tiling so
that each new tile encloses one old vertex and the old
tiling is the dual of the new one. Occasionally, the dual
of a tiling is the same as the original and the tiling is said
to be self-dual.1 If a natural tiling is self-dual the tiling
and the net are said to be naturally self-dual.
1Recall that the concept of duality is familiar for polyhedra (which

may be considered as tilings of the surface of a sphere). Now the new

vertices are in the centers of the original faces (tiles). The cube, 43, and
Why in an article on nets are we discussing
tilings? One reason is that the theory of tilings has
developed in some sophisticated ways and it is possible
to systematically enumerate tilings of various types
[22–25] and hence the nets carried by these tilings.
We summarize some results below. The concept of
duality also leads to insight into the tendency for certain
nets to form interpenetrating pairs (or higher multi-
plicities).
A property of a tiling that we find very useful is the

transitivity. This is a set of four integers pqrs that
indicates that the tiling has p kinds of vertex, q kinds of
edge, r kinds of face and s kinds of tile. Here only
vertices, etc., that are related by symmetry are con-
sidered as one kind. The dual of a tiling with transitivity
pqrs has transitivity srqp. Nets with one kind of vertex
are sometimes called uninodal and tilings with one kind
of tile are called isohedral.
(footnote continued)

octahedron, 34, are duals of each other and the tetrahedron 33 is self-

dual, as are pyramids in general.
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Fig. 9. The moganite anion net, mog-e, with regular tetrahedra (top)

and in maximum-symmetry conformation (below). In the lower figure

the edges that are diagonals of a red square intersect.

Table 1

The nets of this paper listed by embeddability type

1 1a bct bcu dia fau fcu flu gar lcv mep mtn nbo pcu rho

sod srs srs-a wse

1b crb coe fcy fcz gie nia pts qtz rtl sra ths uks

1c 3/8/c3

2 2a cds

2b bcs fnu hms msw qzd rob

3 3a fnm fcb

3b bcu-x mep-e

3c gar-e

4 4 elv tcb ten

5 5 fcw mog-e ulk
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6. Polyhedra and cages

We will use the term polyhedron in the restricted sense
of a convex three-dimensional figure bounded by planar
faces. This means that a line joining two points on the
same face lies entirely in that face, and a line joining
points on two different faces lies entirely, except for the
end points, in the interior of the polyhedron. Polyhedra
commonly encountered in chemistry, such as most
fullerenes, or the ‘‘supercage’’ of the zeolite faujasite,
are not convex as they occur, but they are topologically
equivalent to convex polyhedra of the sort described
above. An important theorem (Steinitz’s theorem) states
that a simple graph is the graph (Schlegel diagram) of a
convex polyhedron if, and only if, it is (a) planar and (b)
three-connected. By this we mean (a) that the graph can
be drawn on a plane without edges intersecting and (b)
there is no pair of vertices whose deletion (together with
their incident edges) would separate the graph into
disjoint parts.
Many of the tiles (cages) that are encountered in

tilings of nets have planar graphs but are not three-
connected. Clearly, no tile with a divalent vertex (as in
Fig. 11) is three-connected; a less obvious example is
shown in Fig. 12.
A convex polyhedron with all trivalent vertices is

simple, and its dual, with all triangular faces, is
simplicial. The tile shown in Fig. 12(a) is topologically
equivalent to a simple convex polyhedron, but that
shown in (b) is not a simple polyhedron sensu stricto as
its graph is not three-connected even though all vertices
are trivalent (three-coordinated).
7. Numbers of nets

Clearly, the numbers of nets is infinite as there is no
limit to the number of kinds of vertex one can have. But
what of nets with a finite number of kinds of vertex, e.g.
uninodal? We can easily show by example that there are
infinite families of uninodal nets. Thus consider the
eight-coordinated two-periodic net with just one vertex
per unit cell with edges going to vertices in unit cells7u,
7v and 7v, 7u; where u and v are integers of opposite
parity and co-prime. Fig. 13 shows the structure for
u ¼ 1, v ¼ 2. One can easily convert these to three-
periodic structures by linking vertices in a third non-
coplanar direction. These nets clearly have embeddings
of type 4.
It seems likely however that the number of nets with

embeddings of types 1–3 for a given number of kinds of
vertex, p, is finite though increasing exponentially with p

(see below). About the only firm results we have
available are the enumeration of uninodal sphere
packings with connected graphs (i.e. those for which
there is a path of edges between any pair of vertices)
carried out over the years by Fischer, Koch and Sowa.
From their results (for references see [14,26–29]),
which do not extend yet to the monoclinic and
orthorhombic systems, we can estimate that the number
of such structures is at most a few thousand. A nice
result is that there is exactly one intrinsically triclinic
sphere packing [26].
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Fig. 11. (a) A C10 (‘‘adamantine’’) unit of the diamond structure. (b) The same unit as a cage (tile). (c) Five tiles fused together showing development

of the dia (diamond) net. (d) The same with the tiles shrunk to show how they fit together.

Fig. 10. (a) and (b) Two 44 tilings with different shaped tiles. (c) and (d) Two 63 tilings with different shaped tiles.

Fig. 12. Two tiles from isohedral tilings (a) kts. This polyhedron is topologically equivalent to a simple convex polyhedron. (b) bcr. Note that the

graph of this tile is not three-connected as deleting e.g. the two vertices indicated by arrows will leave two unconnected parts, and this tile is not

topologically equivalent to a convex polyhedron.

O. Delgado-Friedrichs et al. / Journal of Solid State Chemistry 178 (2005) 2533–2554 2541
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Fig. 13. Part of an eight-coordinated two-periodic net described in the

text. The colors are to aid in distinguishing edges.
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An enumeration of three-coordinated sphere packings
(embeddings of type 1) found 55 structures of which six
had embeddings of type 1c ([27], see also [28]).
An empirical search [30] for uninodal four-coordi-

nated nets with embeddings of types 1a and 1b has
resulted in the recognition of 168 such structures. These
are documented in a database described below.
There has of course been a long history of empirical

searches for frameworks for zeolites and crystals
in general starting from the pioneering work of
Wells [31] half a century ago; for references to these
see e.g. [32,33].
2A reminder: the regular polyhedra are the tetrahedron 33, the

octahedron 34, the icosahedron 35, the cube 43, and dodecahedron 53.

The regular plane nets are the triangular lattice 36, the square lattice 44,

and the honeycomb net 63.
3There are at least two more nets which are carried by tilings (not

natural tilings) with transitivity 1111 [34].
4If we color alternate vertices of e.g. the pcu structure black and

white, we get of course the NaCl structure; the transitivity of the

natural tiling of this colored structure is 2111. However, we do not

admit the possibility of colored nets in this discussion.
8. Some special nets and tilings

8.1. Regular nets

The coordination figure associated with a vertex is
defined by the convex hull of the neighbors of a
vertex. We require for a regular net in its maximum-
symmetry embedding, that this figure be a regular
polygon or polyhedron. We further require the
vertex to have site symmetry in the net that is at least
the rotation symmetry of that regular polygon or
polyhedron.
It is easy to show [21] that there are exactly five such

three-periodic nets with vertex figure triangle, square,
tetrahedron, octahedron, and cube; these have symbols
srs, nbo, dia, pcu and bcu, respectively. They are as
important to chemistry as the five regular polyhedra and
three regular two-periodic nets which have been known
since antiquity.2 The regular nets are illustrated in
Fig. 14 both as the net itself and as the augmented net in
which each of the original vertices is replaced by its
coordination figure.
An interesting property of the regular nets is that their

natural tilings all have transitivity 1111. We know of no
other nets that have this property.3

The dual of a natural tiling of a regular net is a
natural tiling of a regular net. srs, dia and pcu are self-
dual and nbo and bcu are a mutually dual pair.
8.2. Quasiregular net

A quasiregular polyhedron is one with one kind of
edge and one kind of vertex. There are two: the
cuboctahedron 3.4.3.4 and the icosidodecahedron
3.5.3.5. A quasiregular net is one in which the vertex
figure is a quasiregular polyhedron. As 3.5.3.5 has
icosahedral symmetry, the only possibility for the vertex
figure of a three-periodic structure is 3.4.3.4. The net
with this vertex figure is the net (fcu) of cubic closest
sphere packing (also shown in Fig. 14) [21]. The
transitivity of the natural tiling of fcu is 1112 reflecting
that it consists of two types of tile (tetrahedra and
octahedra). Again we know of no other natural tiling
with transitivity 1112.
The dual of fcu has transitivity 2111 and the net (flu) is

that of the fluorite (CaF2) structure, with two tetra-
hedral vertices for each eight-coordinated (cubic) vertex.
There is no other known binary structure with this
transitivity so in a sense the flu structure is the most
regular binary structure.4
8.3. Semiregular nets

Semiregular nets have been defined as those whose
natural tilings have transitivity 11rs, r41. Fourteen
with embeddings of type 1 or 2 (above) have been
identified [15]. They include such familiar nets
such as those of quartz (qtz) and sodalite (sod).
We remark that there are infinite families of vertex-
and edge-transitive nets analogous to the two-
dimensional one described earlier, but these all have
embeddings of type 4 and large coordination numbers
(24 or 48).
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Fig. 14. The regular and quasiregular nets in their standard and augmented (-a) forms. Note that pcu-a is also known a polycubane (pcb) and fcu-a is

also known as UB12 (ubt).

5The number of tile-3-transitive tilings corrects a small error in Ref.

[23].
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8.4. Edge-transitive nets

Nets with two kinds of vertex (usually two kinds of
vertex figure) and one kind of edge are of particular
interest in the design of materials [5]. A number have
been described in our earlier tutorial [2]. Familiar
examples are the fluorite (flu), PtS (pts) and NiAs (nia)
nets. A systematic description of those with embeddings
of type 1 or 2 is planned [35]. We currently know 25 such
structures and believe that this comprises ‘‘most’’ of
them.

8.5. Uniform tilings

Uniform tilings are ones in which both the individual
tiles and the tiling are vertex transitive. Alternatively
stated, the structure is a uninodal net formed by tilings
of regular and/or Archimedean polyhedra. There are 28
of them [36] and it has been observed that most occur in
common crystal structures [37]. We believe that this
classification, which focuses on the individual tile, is less
useful than one that focuses on the tiling, as in the
classification by transitivity. In particular, four of our
five regular nets are not uniform tilings (the vertices of
individual tiles are not related by symmetry, although in
the assembled tiling all the vertices are so related).
Wells [38] has used the term ‘‘uniform net’’ in a quite

different sense: that of a net in which the shortest cycles
at each vertex are all the same size.
8.6. Simple tiling

A simple tiling is a tiling by simple polyhedra in which
three tiles meet at an edge and four at a vertex (the
minimum number in each case). Foams, grains in
polycrystalline material, and cellular materials are
simple tilings, albeit usually not periodic. The structures
of many important zeolites are, however, based on
periodic simple tilings.
It follows from the definition just given, that the tiles

of a tiling dual to a simple tiling have triangular faces
and four vertices, i.e. they are tetrahedra. It turns out
that with modern methods of combinatorial tiling
theory complete enumerations of tilings by tetrahedra
can be carried out [22,23] and it has been established
that there are exactly 9, 117, and 1351 tilings by one,
two, and three kinds of tetrahedra, respectively.5

An important example of a simple tiling is the so-
called Kelvin structure, known to chemists as the
sodalite structure, which results from a tiling of space
by truncated octahedra (Fig. 15). The net symbol is sod.
The dual of the sodalite tiling is the packing of
congruent tetrahedra for which the net is bcu-x shown
in Fig. 5.
The isohedral tilings by tetrahedra are of special

interest. In an often-cited article [39] Marjorie Senechal
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Fig. 15. (a) A truncated octahedron–an example of a simple polyhedron. (b) A simple tiling (space filling) by truncated octahedra. (c) The same with

the polyhedra slightly shrunk. The vertices and edges form the sod net.

Fig. 16. Tilings carrying the nets mtn and mep. Left: all tiles. Center and right: each of two kinds of tile separately.
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asks ‘‘Which tetrahedra fill space?’’ noting that ‘‘filling
space by congruent polyhedra y is one of the oldest
and most difficult of geometric problems’’, so that
problem is solved at least for isohedral tilings by
tetrahedra (there could, in principle, be tilings by
congruent tetrahedra that are not all related by
symmetry—such a tiling is termed monohedral). The
duals are the nine simple tilings with one kind of vertex
(vertex transitive). Interestingly, seven of these corre-
spond to known zeolite nets, and all nine have long been
known to crystal chemists [12,40]. Of course before the
tiling work [22], it was not known that the list was
complete.
Simple tilings by polyhedra that have only five- and

six-sided faces are also of special interest. It appears,
though it has never been proved, that only four
polyhedra (with 12, 14, 15 or 16 faces, respectively)
can occur in such tilings. The duals of these tilings are
the so-called Frank–Kasper ‘‘tetrahedrally close
packed’’ structures. The two most important of these
tilings (mtn and mep, Fig. 16) correspond to the
structures of the type I and type II clathrate hydrates,
and their duals are the structures of MgCu2 and Cr3Si
respectively—see e.g. Ref. [12]. These two simple tilings
both have three kinds of vertex. Because of the
enumeration of simple tilings described above, it is
known that they are the only such tilings with less than
four kinds of vertex.
It should be noted that, although the dual of a simple

tiling is a tiling by tetrahedra, according to our strict
definition of simple tilings the converse is not true. The
tiling for which one tile is shown in Fig. 12(b) is the dual
of a tiling by tetrahedra but as discussed above, the tile
is not a simple polyhedron.

8.7. Isohedral simple tilings

In related work, isohedral simple tilings by tiles with
p16 faces have been determined [25]. It was found that
there are 0, 23, 136, and 710 distinct isohedral tilings for
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Table 2

The numbers of known (to us) uninodal nets with order of site symmetry X4 or X8

c.n. 3 4 5 6 7 8 9 10 11 12 Total

Order X4 3 16 9 26 9 11 4 9 1 3 91

Order X8 0 4 3 6 0 5 1 2 0 2 23

‘‘c.n.’’ refers to coordination number.
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tiles with o14, 14, 15, and 16 faces, respectively. Most
of these are rather low symmetry and have many
different kinds of vertex (already for 14-face tilings there
can be as many as ten kinds of vertex in a tiling). The
Kelvin structure (Fig. 15) is one such isohedral tiling
with a tile with 14 faces and was described by Lord
Kelvin in 1887; interestingly no more appear to have
been described until two more were discovered in 1968
(see Ref. [25] for details).

8.8. Symmetrical nets

It was hypothesized [2] and fully verified from an
extensive search of the literature [4], that ‘‘only a small
number of simple, high-symmetry structures will be of
overriding general importance’’ as the underlying
topology of crystals made by assembly of molecular
building blocks. ‘‘High-symmetry’’ here refers to the
order of the point symmetry at the vertices of the net in
their maximum-symmetry embeddings. In a periodic net
the site symmetry can range from 48 in a cubic lattice to
1 for the generic case. However, the number of nets with
order of point symmetry X4 is just a small fraction of
the total and with order of point symmetry X8 one
arrives at a select few.6

Table 2 lists the numbers of symmetrical nets from
our collection (more that 500, see the discussion of
databases below) of uninodal nets. Of about 170
uninodal four-coordinated nets (one of the more
important categories) only four have order of point
symmetryX8. These have all been mentioned already in
this article. They are (with order of point symmetry) dia
[24], nbo [16], sod [8] and cds [8]—see Figs. 14, 15, and 1,
respectively.

8.9. Minimal nets and minimal surfaces

Minimal periodic nets are ones for which deletion of
any edge, and all its translates, would result in a
structure that is no longer connected. A very nice result
is that there are exactly 15 such three-periodic nets [41]
6We have mentioned earlier certain infinite families of nets with

embeddings of type 4. From the two-periodic example given (see Fig.

12) one can derive an infinite family of 10-coordinated three-periodic

nets with symmetry P4/mmm with site symmetry 4/mmm (order ¼ 16).

The data in Table 1 refer mostly to nets which have embeddings of

types 1–3.
and of these only eight correspond to nets without
collisions [42]. Of these, five have self-dual natural tilings
(it is easy to show that the dual of a tiling of a minimal
net must carry a net that is also minimal see [42]).

Minimal surfaces are surfaces for which the average
curvature is everywhere zero. Three-periodic minimal
surfaces (PMSs) are of very considerable interest to
many aspects of crystal chemistry and physical chem-
istry (see e.g. Refs. [43,44]). A serious discussion of their
properties here would take us too far afield; suffice it to
say that the five most important such surfaces are those
with the minimal genus (in a sense the ‘‘minimal
minimal surfaces’’) named P, D, G, CLP, and H. The
labyrinth (channel) systems of these five surfaces are the
five minimal nets with self-dual natural tilings, viz. pcu,
dia, srs, cds, and hms. The first four (all met earlier in
this article, see Figs. 14 and 1) are uninodal and of
crucial importance to the next topic. Tiles of these nets
with interpenetrating duals are illustrated in Fig. 17.
Imagine now that the edges of pairs of interpenetrating
nets are hollow tubes that are inflated uniformly until
they meet at a common surface: this surface is the
corresponding minimal surface.

8.10. Nets as tilings of minimal surfaces

It has been recognized for some time [43] that many
three-periodic nets are usefully considered as tilings of
minimal surfaces. Indeed, this looks like being another
promising way to approach the systematic enumeration
of nets [44–46]. The most important surfaces in this
context are P, D, and G and it is often found [45] that
the same two-dimensional tiling produces different
three-dimensional nets for each surface.
In a two-dimensional tiling of the plane by polygons,

the sum of the angles at the vertices of the polygons that
meet at each vertex must be 3601, as e.g. for the tiling 36.
If the sum of angles is less than 3601, as for 35, the tiling
is of a surface of positive curvature and one gets a finite
polyhedron (the icosahedron in this instance). If the sum
is greater than 360, e.g. for 37, the surface being tiled
must have negative curvature as is the case for the
hyperbolic plane. These tilings of the hyperbolic plane
can also sometimes be projected onto Euclidean space as
tilings of minimal surfaces [44,45].
As an example we describe three tilings 43.6 of these

three surfaces in Fig. 18—in this case the sum of angles
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Fig. 17. The uninodal nets of naturally self-dual tilings. One tile is shown in red, and a vertex in the tile and its immediate neighbors are shown in

dark blue. The light blue parts complete one dual tile.

7This is readily done using Delaney–Dress symbols—see e.g. [48].
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is 3901. As infinite periodic surfaces are being tiled with
polygons, infinite periodic polyhedra [12,38] are pro-
duced. The first structure (rho) is the net of the zeolite
RHO shown as a tiling of the P surface forming an
infinite polyhedron in Fig. 18. Note that the polyhedron
shown fills half of space, and the empty space (the
complementary polyhedron) is identical. Note too that
the natural three-dimensional tiling is a space filling by
the Archimedean polyhedra 42.8 (octagonal prism) and
4.6.8 (truncated cuboctahedron) and it is an example of
a uniform tiling. It is also one of the nine uninodal
simple tilings. The symmetry of one infinite polyhedron
is the same as that of pcu, i.e. Pm3̄m, but that of the two
polyhedra together, and hence that of rho, is Im3̄m.
The next structure (uks) is a 43.6 tiling of the D

surface. Again the infinite polyhedron is the same as its
complement. The symmetry of one polyhedron is the
same as that of dia, i.e. Fd3̄m, but that of the two
polyhedra together, and hence that of uks, is Pn3̄m. The
structure is not a simple tiling, but as may be seen from
the figure the natural tiling is the combination 2
[46.122]+[46.64.124] (in a symbol for a tile mn means
that there are n faces that are m-gons, see [7]).
The third structure (gie) is the net of the zeolite like

material UCSB-7 [47] and is a 43.6 tiling of the G

surface, again to produce an infinite polyhedron
identical to its complement. The symmetry of one
polyhedron is the same as that of srs, i.e. I4132 , but
that of the two polyhedra together, and hence
that of gie, is Ia3̄d. The natural tiling is 3[44.102]+
2[43.62.103].
The above three nets are of course to be found in

W. Fischer’s list of cubic sphere packings [11]; the
correspondence is rho ¼ 4/4/c4, uks ¼ 4/4/c7, gie ¼ 4/4/
c20.
We give here two examples of tilings 32.4.3.6 (angle

sum ¼ 3901) of the G surface. Note in passing that
32.4.3.4 (angle sum ¼ 3601) is an example of an
Archimedean (vertex-transitive) tiling of the plane, a
surface of zero curvature, and 32.4.3.3 ¼ 34.4 (angle
sum ¼ 3301) is an Archimedean polyhedron, a tiling of a
surface of positive curvature. It is interesting that
although there is just one tiling7 32.4.3.6 of the
hyperbolic plane, there are at least two of the G surface.
Fragments of these structures (fcy and fcz) are shown in
Fig. 19. They have some interesting similarities: both
have the same symmetry, Ia3̄d, and unit cell edge at
minimum density. Their vertex symbols are the same
3.3.3.4.6.102.104.108.108.1012. However, we can be sure
that they are different nets as the coordination
sequences are different starting from the sixth coordina-
tion shell. They also have different natural tilings:
for fcy the tiles are 3[42.102] ¼ 2[312.62.103] and
for fcz they are 3[38.42.102]+2[62.103], see Fig. 19.
The Fischer symbols for these two structures are 5/3/c41
and 5/3/c42 [11].
In contrast to the case of 32.4.3.6 there are two

distinct hyperbolic uninodal tilings 436. Accordingly
there must be more tilings of the minimal surfaces in
addition to those shown in Fig. 18. We illustrate the
structure (fau) which is the net of the faujasite (FAU)
family of zeolites. Here we have a 43.6 tiling of a surface
with the same topology as the D surface, but the actual
surface does not divide space into equal parts (imagine
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Fig. 18. 43.6 tilings of the P, D and G surfaces. On the right the structures are shown as three-dimensional natural tilings with the tiles slightly

shrunk. Note that in each case only half the three-dimensional tiles are shown (the ‘‘empty’’ space would be filled by an identical set of tiles).
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the two interpenetrating dia nets as being unevenly
inflated) and the complementary polyhedron is not the
same. As shown in Fig. 20, the first polyhedron can be
considered as assembled from three-dimensional tiles
that are hexagonal prisms and truncated octahedra
(sodalite cages) and the complementary polyhedron,
which is different, is made up of large tiles known as
supercages. Now the symmetry of either infinite poly-
hedron or their combination is the same as that of dia,
i.e. Fd3̄m. Of course, the three sorts of three-dimen-
sional tile combine to fill space and the tiling is the
natural tiling for fau. It is another example of a uninodal
simple tiling. The two-dimensional tiling in fau may be
seen to be different from that in uks by noticing that in
uks (and in rho and gie) one of the quadrilaterals shares
edges only with other quadrilaterals and no quadrilat-
eral in fau has this property.
8.11. Self-dual tilings, interpenetrating nets, and

entanglements

As already mentioned, some nets admit tilings that
are self-dual. In at least one case there can be an infinite
family of self-dual tilings all carrying the same net [34].
However for natural tilings, which are almost always
unique for a given net, the property of self-duality
appears to be rather rare. Indeed, we know of only four
uninodal nets that are naturally self-dual—the nets
alluded to above (srs, dia, pcu, and cds) and illustrated
in Fig. 17.
If two self-dual nets interpenetrate, all the edges of

one net penetrate the rings (tile faces) of the other and
vice versa so that all the essential rings (faces of tiles) of
one net are catenated with rings of the other and the nets
are fully catenated. The topic of interpenetrating nets in
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Fig. 20. The fau structure as a 43.6 tiling of the D surface shown left and center as complementary polyhedra, and on the right as a three-dimensional

natural tiling with the tiles slightly shrunk.

Fig. 19. Two 32.4.3.6 tilings of the G surface. On the right the structures are shown as three-dimensional natural tilings with the tiles slightly shrunk.

As in Fig. 18, only half the tiles are shown.
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crystal structures is currently of great interest and has
been reviewed [49–51] and studied in the context of
porosity in MOFs [52,53]. It is clear that the propensity
for inter-penetration is confined predominately to very
few nets. In a paper on minimal nets [42] the authors
remarked ‘‘we believe that the only vertex-transitive
naturally self-dual nets are y pcu, dia, srs and cdsy.
We believe that, in most cases of crystal structures based
on interpenetrating nets, the net topology will be derived
from one of these four basic nets.’’ This turned out to be
an accurate prediction. A subsequent analysis [50] of all
301 interpenetrating MOF structures published up to
2003 showed that structures based on one of these four
nets accounted for 70% of the total. An additional four
nets (rtl, pts, ths and sra) accounted for an additional
11%. The first two of these nets are simply related to cds

[13] and the second two to dia (42 and to be published).
Similar trends are found in the analysis of inorganic
structures reported in this issue [51].
Some well-known nets are self-catenated. The four-

coordinated net, coe, of the coesite form of silica is a
well-known example [10,54]. Other examples that occur
in this paper are tcb and ten (Fig. 7). We illustrate two
more examples in Fig. 21. The first, fnu is five-
coordinated and is derived from bcu (body-centered
cubic) by omission of 3=8 of the bonds; its symmetry is
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Fig. 22. Fragment of an embedding of the net of diamond (dia). Two

catenated six-rings are shown in blue and red. Redrawn after Fig. 11 of

Carlucci et al. [55].

Table 3

Some important uninodal nets

net Regular Minimal Self-dual

srs x x x

nbo x

dia x x x

pcu x x x

bcu x

ths x

cds x x

‘‘Self-dual’’ refers to the nets of naturally self-dual tilings.

Fig. 21. Two self-catenated nets. The rings emphasized in red and blue are catenated.
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R3̄m. The second msw recently turned up in a hydrogen-
bonded framework [55]. It is derived from bct, the 10-
coordinated body-centered tetragonal lattice with
c=a ¼

p
ð2=3Þ, by omission of 2

5
of the bonds; its

symmetry is P42/nnm.
A net may well have separate embeddings with and

without catenated rings. A very nice example is provided
by the familiar diamond net (dia, Fig. 11). This has been
found [56] to occur in a self-catenated form shown in
Fig. 22. We emphasize that the two graphs for which
fragments are shown in Figs. 11 and 22 are the same,
and the nets are both dia; it is just the embedding that is
different in the two cases.
It is possible that at least some of these self-catenated

nets are not carried by a tiling, at least in the usual sense,
as rings that are tile faces cannot be catenated with other
rings. It is not at all clear whether some of them may
have embeddings without self-catenation as in the
diamond example. This is a difficult question that
requires close attention to the question of what exactly
constitutes a ring in this context. These are interesting
topics we must leave for another day.
We also do not consider other entanglement phenom-

ena such as catenation of bidimensional layers. Many
examples of these exceptional topologies have been
shown recently [54,56].

8.12. So what are the most important nets?

Importance is of course subjective, and will depend on
context. However, we have mentioned three special
kinds of net: regular, minimal, and those with naturally
self-dual tilings. Uninodal nets with these properties are
listed in Table 3. ths refers to the familiar net of Si in
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ThSi2 [2]. We believe that description of these structures,
together with the binodal structures identified in [2],
belongs in every serious textbook concerned with
chemical structures.
9. Databases

Here we briefly describe some databases of three-
periodic structures that are useful in one or another
aspect of crystal chemistry.

9.1. RCSR

This database, currently at http://okeeffe-ws1.la.
asu.edu/RCSR/home.htm, and very much still under
development, is devoted to the simpler nets that arise, or
might arise, in crystal chemistry. It contains most of the
Fischer–Koch–Sowa sphere packings with embeddings
of type 1a or 1b (although many of these, e.g. diamond,
are known in other contexts as well!). Most of the
structures are uninodal or binodal and include the nets
of common crystal structures such as those of feldspar
and rutile. All the structures mentioned in this paper are
to be found there. At present, there are approximately
1200 structures in a database that is searchable by
symbol, name, keyword, and properties.

Symbols, such as dia or srs-a, are assigned to each
structure. Many nets have a three-letter symbol, for
others there are three letters and an extension. Thus srs-
a refers to the net derived from srs by replacing each
vertex by its vertex figure to produce an augmented net.
srs-e refers to the net derived by replacing the original
net with one derived from vertices in the positions of the
original edges—the edge net (some examples have been
met in this article). Note that the net srs-e is sufficiently
‘‘important’’ to have its own, rather than a derived,
symbol. This is lcv. Search of the database by either
symbol will result in the entry for lcv where one finds
that the net has ‘‘alternate symbol’’ srs-e. Similarly sod

has alternate symbol nbo-e. A full explanation of the
construction of net symbols is given at the web site.

Names are names commonly used, such as ‘‘dia-
mond’’.
Keywords refer to special classes such as ‘‘simple
tiling’’ or ‘‘regular net’’.
Properties refer to properties such as number of kinds
of vertex, space group number, and density.

For each structure, symmetry, coordinates of vertices
and edges, and unit cell parameters are given for an
optimal embedding. The data are presented in a way
that allows one to read off the number of variables in
the structure and the number of kinds of edge. Some
topological properties such as vertex symbols, coordina-
tion sequences and transitivity (when known) are also
given. It is planned to extend the database to other kinds
of structure such as two-periodic layers and to
polyhedra and cages. As it is still in a development
stage, suggestions and feedback are very welcome (send
to M.O.K.).

9.2. Hypothetical zeolites database

A hypothetical zeolite database, currently at www.
hypotheticalzeolites.net, is a collection of zeolite struc-
tures generated by the symmetry-constrained intersite-
bonding search (SCIBS) method of Treacy et al. [32,33].
It contains a collection of zeolitic frameworks that were
refined from graphs that are obtained by systematically
searching over all possible four-coordinated arrange-
ments of p unique vertices in each space group. For each
of the 230 space groups all combinatorial possibilities
for uninodal (p ¼ 1) and binodal (p ¼ 2) nearest-
neighbor connections have been computed. For some
select space groups such as number 191 (P6/mmm) the
set of graphs up to n ¼ 6 crystallographically unique
vertices have been computed and refined. The refine-
ment of the zeolite structures as an SiO2 composition
is two-fold, one coarse grained refinement using a
cost function due to Boisen et al. [57], and the other
with more computationally expensive interatomic po-
tential methods [58], dividing the database into
BRONZE and SILVER sections, respectively. Several
zeolite framework types coexist in different space
groups, so a large number of duplicate structures are
found, therefore the GOLD section of the database
attempts to filter and present the unique topologies in
their highest refinement level for uninodal and binodal
framework types.
The graph search and refinement process are per-

formed on a large computer cluster. For the uninodal
graphs, approximately 40,000 graphs were computed,
which can easily be accomplished in a few hours on one
PC. For the binodal graphs, over 440 million graphs
were computed, resulting in months of computation on
64 processors. Currently, we are computing space
groups with o108 graphs for p ¼ 3, 4, and 5.
For each space group, there is a combinatorial

explosion of graphs as the number of unique vertices
increases. The number of graphs N found for each space
group is found to grow as N ¼ ABp. For space group
P6/mmm (No. 191) we get A191 ¼ 0:084, B191 ¼ 24:6
whereas for space group Ia3̄d (No. 230) we get
A230 ¼ 0:053, B230 ¼ 1310. The coefficient B determines
the largest practical value of p that can be examined,
which for Ia3̄d is pp4. Interestingly, most space groups
fall into one of two categories, with either a high or low
B value, epitomized by B191 and B230. Fig. 23 shows a
plot showing ln(N) versus p for seven space groups
showing the bimodal distribution of slopes.

http://okeeffe-ws1.la.asu.edu/RCSR/home.htm
http://okeeffe-ws1.la.asu.edu/RCSR/home.htm
http://www.hypotheticalzeolites.net
http://www.hypotheticalzeolites.net
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Fig. 23. Plots of the number of graphs found N as a function of the

number of unique vertices p for a selection of space groups. There is a

clear exponential relationship N ¼ ABp (A and B are constants for

each space group), which shows that the SCIBS method is limited by a

combinatorial explosion of graphs as p increases. Some space groups,

such as P6/mmm (No. 191) have relatively low values of B, allowing p

to be as high as 6.
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In addition, as N increases, the fraction of viable nets
falls dramatically. Consequently, as p increases, the
efficiency of the SCIBS search decreases. For example,
to find the MFI framework, which has p ¼ 12, in space
group Pnma, our present strategy will need to sift
through more than 1035 graphs! Such combinatorial
explosions are an inherent limitation of such geometric
search methods. However, efficient pre-filtering of the
graphs may mitigate the combinatorial explosion of
graphs. For example, inspection of the topological
density TD10 (the averaged sum of the first 10 shells of
the coordination sequence) quickly reveals graphs with
density greater than that for quartz (TD10 ¼ 1230,
contrast elv, for which TD10 ¼ 23922). Other topologi-
cal indicators of graph viability are needed.
The polyhedral tiling method of Delgado Friedrichs et

al. [22–25], offers an efficient approach to framework
discovery because the open polyhedron is an essential
element of all useful zeolites. The polyhedral tiling
approach is relatively immune from generating the self-
catenated frameworks, such as ten (see Fig. 7), and
offers much promise for discovering high p frameworks.
Another strategy due to Deem and co-workers [59], is

to adopt a statistical mechanics approach, and to allow
p unique vertices to anneal within the constraints of a
given space group. This is an efficient method for
discovering the high p frameworks (such asMFI), but by
its very nature, it bypasses many of the topologically
interesting (but chemically less likely) frameworks such
as ten and elv.
Despite the limitations of the various methods, these
databases are already proving useful for structure
determination. The framework of ZSM-10 [60] was
unambiguously identified [61] by searching all 18 million
graphs in space group P6/mmm, with p ¼ 6, for the
lowest energy framework that matches the known
powder pattern. Rietveld powder pattern refinements
are problematic for ZSM-10, partly because of the small
crystallite size, and partly because of the difficulty in
removing all of the cations from the framework [60].
Fig. 24 shows aspects of the structure and its relation-
ship to the tripled cell of the zeolite LTL. The two
structures have columns of large tiles with planar 12-
ring faces. These are surrounded by six columns of
tiles, alternating hexagonal prisms and ‘‘cancrinite
cages’’, with planar six-ring faces (colored blue in the
figure). In LTL the centers of the six-ring tiles are
on 63 nets; in ZSM-10 they are on 3.4.6.4 nets. The two
nets are easily interconverted by 301 rotation of the
groups of columns as indicated in the figure (see
also Ref. [12, p. 201]). It might be noted how useful a
natural tiling is in delineating the cages in zeolite
structures. The ZSM-10 tiling is quite complex: the
transitivity is 6 15 16 8.
This work also showed that one can produce nets that

look identical in projection (along [0 0 1] in this instance)
and which have very similar unit cell parameters, but
which are really quite different. Fig. 25 shows the
column of cages with planar six-sided faces of the
previous paragraph and also a related column with an
identical projection taken from one of several additional
low-energy frameworks that emerged from the search.
Interestingly, these other frameworks contain five-rings
and are potentially interesting high-silica synthetic
targets.
It is clear that the next decade is going to witness a

rapid growth in the number of known hypothetical
framework materials, including mixed coordination
nets. A concomitant growth in targeted-synthesis
techniques is much needed.

9.3. Atlas of zeolite structure types

This well known database, whose address is http://
www.iza-structure.org/databases/ is devoted exclusively
to the frameworks of known zeolites; currently there are
165 entries. Virtually, everything one would want to
know about zeolite structures (symmetry, coordinates,
etc.) is accessible from this database which is maintained
by the international zeolite association. The structures
are assigned an ‘‘official’’ three-letter code e.g. FAU for
faujasite. Generally, when structures from this database
appear in RCSR they are assigned the same three-letter
code, but now lower case. Visitors to both sites will
recognize the debt owed by RCSR to the zeolite
database.

http://www.iza-structure.org/databases/
http://www.iza-structure.org/databases/
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Fig. 24. Aspects of the nets of ZSM-10 (left) and LTL (right). Top the nets. Below that the nets with shrunken natural tiles. Below that the tiles fitted

together. At the bottom is shown the pattern of columns of tiles with plane hexagon faces (colored blue in the tiling pictures above).
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9.4. Tetrahedral frameworks of zeolites, clathrates and

related materials

A large collection of known and hypothetical
structures and secondary building units (SBUs) relevant
to zeolite and related structures has been published as a
volume of Landolt– Börnstein [62].
10. Computer programs

Here we briefly describe three programs designed for
topological analysis of structures.
10.1. TOPOS

The program package TOPOS 4.0 with an advanced
graphical interface (available at http://www.topos.ssu.
samara.ru) [63] was recently improved for the automatic
determination and classification of the interpenetration
degree [50,51]. The program is also able to analyze and
simplify complex groups (including H-bonded net-
works) and to assign the topology of the resulting
network according to the RCSR proposed symbol. As a
result, typical crystal structure of organic, inorganic, or
coordination compound may be processed in a few
minutes from the .res or .cif files, to get a comprehensive

http://www.topos.ssu.samara.ru
http://www.topos.ssu.samara.ru
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Fig. 25. Left: column of cages found in LTL and ZSM-10 (alternating

hexagonal prisms and ‘‘cancrinite cages’’). Right; column from a

hypothetical network. The projections down [0 0 1] shown in (a) and

(b) are almost identical but views almost normal to c reveal that they

are quite different.
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description of the topology and of the interpenetration
(if any). Automatic analysis and classification of
polycatenation is planned for the near future [64]. A
detailed analysis of Voronoi–Dirichlet partition of
crystal space and estimation of related crystallochemical
parameters are also available in TOPOS [63].

10.2. Systre

The program Systre [8] is designed to determine the
symmetry of a net, to determine whether it is a known
structure and to provide a refined embedding. The name
is derived from these three aspects: symmetry, structure,
refine. Input can be in terms of coordinates, or
coordinate-free (purely topological). If some coordinate
representation is given, the net is first reduced to its
basic topology. An equilibrium placement is then
derived. If at this point the net is determined to be
collision free, the isomorphisms (symmetry operations)
relating vertices are determined, a primitive cell deter-
mined and the space group identified. The next step is to
determine a canonical form which is essentially a set of
integers that is unique to a particular net, and which is
always computed to be the same for every input of the
same underlying topology. Thus, for nets without
collisions, it solves the graph isomorphism problem: it
unambiguously determines whether two nets have the
same or different topologies. Finally, starting from the
equilibrium placement, a minimum density embedding
in the maximum symmetry is found. For a more detailed
account, including a worked example, see Ref. [8].

10.3. TOTOPOL

The program TOTOPOL was written originally to
analyze bond distances, inter-bond angles, coordination
sequences and vertex symbols of four-coordinated nets
such as zeolites. However, it is flexible enough to handle
nets with up to 12-coordination. TOTOPOL reads a .cif
file corresponding to a framework material. To mini-
mize framework ambiguities, extra-framework atoms
should be removed from the .cif file. In some instances,
framework cations may need to be replaced by Si, or
simply ‘‘T’’. The program computes T–O distances
(where ‘‘T’’ is nominally the framework cation, such as
Si), as well as O–T–O, T–O–T angles. The coordination
sequence, vertex symbol and circuit symbol for each
unique framework T-atom is computed and compared
with an archive that includes the known zeolite frame-
work types. The program does not need bridging oxygen
atoms to work. Without the bridging atoms, it computes
T–T distances and T–T–T angles. The atom cluster
involved in each vertex symbol or circuit symbol is
displayed in an interactive window. The TOTOPOL
program can be used on the web at http://www.
hypotheticalzeolites.net.
The occurrence of two distinct tilings (e.g. fcy and fcz

of Fig. 19) of the G surface corresponding to a unique
hyperbolic tiling has been shown [65] to arise for the G
surface only (i.e. not for P or D) and if, and only if, the
hyperbolic tiling is chiral. The fcz structure has recently
been found [66] to be the underlying net of a complex
mesoporous germanate.
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