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The concept of a natural tiling for a periodic net is introduced and used to derive a transitivity

associated with the structure. It is accordingly shown that the transitivity provides a useful

method of classifying polyhedra and nets. For design of materials to serve as targets for synthesis,

structures with one kind of edge (edge transitive) are particularly important. Edge-transitive

polyhedra, layers and 3-periodic nets are then described. Some other nets of special importance in

crystal chemistry are also identified.

1. Introduction

Particularly in the case of porous materials based on metal–

organic frameworks (MOFs), it has proved possible to synthe-

size a targeted composition and structure with the topology of

a specific periodic net.1 The process occurs by linking together

molecular secondary building units (SBUs). This is often,

correctly in our view, referred to design of materials. The

possibility of materials (crystal) design has been questioned;2

however, the objections depend mainly on interpretation of

the word ‘design’ itself. English and American dictionaries

generally agree that the primary meaning is that of a purposive

plan3 and this is the sense that we and, we suspect, many of our

colleagues, use the term in a chemical context, and it is the

sense that is used here. Of course in the world of haute couture

for example, ‘design’ has a rather different connotation.

In design of crystalline materials one must know the ‘‘prin-

cipal topological possibilities’’4 and a major problem has been

that of deciding which of the infinite number of possibilities5

present feasible targets. It has been argued1,6 that only a small

number of special, high-symmetry nets will be of overwhelm-

ing importance in this connection, and indeed this hypothesis

is verified by analysis of data for existing materials.7 In this

review we give an informal account of our work towards a

method of systematic classification (taxonomy) of polyhedra

and periodic nets that is appropriate for identifying the

structures of special interest as feasible targets of synthesis.

For a general account of the different kinds of net and

methods for their enumeration see ref. 5.

A generally useful method of proceeding is to consider the

patterns formed by tilings. The tilings we will be interested are

coverings of a surface (a 2-D space) with polygonal tiles or of

3-D Euclidean space by generalized polyhedra or cages. 2-D

tilings may be the familiar coverings of the plane by squares,

hexagons etc., or tilings of a sphere in which case the structure

corresponds to a convex polyhedron. The filling of space with

cubes is a familiar example of a 3-D tiling. In 2-D tilings, the

edges of the tiles are common to exactly two tiles, the tilings

are edge-to-edge. In the 3-D case the faces of tiles are common

to exactly two tiles and the tilings are face-to-face. The set of

vertices and edges of the tilings (the 1-skeleton) are a net (a

simple, connected graph) and we say that the tiling carries a

net. A review of basic terms and definitions relevant to the

description of crystal nets as graphs has been given recently.8

Every tiling carries a unique net, and indeed the systematic

enumeration of tilings is a very powerful way of enumeration

of 3-periodic nets of a desired type.9,10 On the other hand a

given net may have more than one, indeed even an infinite

number, of possible tilings. However there is usually a unique

special tiling that we call the natural tiling; this is described

next.

We like to think of nets as topological constructs, however

in the discussion below when we refer to symmetries of the

structure, we refer to the most symmetrical embedding in

Euclidean space. For all the structures we mention here the

automorphism group of the net is isomorphic to the symmetry

group of the most-symmetrical embedding.

2. Natural tilings, transitivity and symbols for nets

In tilings of 2-D surfaces, we consider only as tiles, the cycles

of the graph that are strong rings, i.e. cycles that are not the

sum of smaller cycles.8 This condition is necessary as in for

example a cube, as well as the ‘obvious’ 4-sided faces, we could

use 6-cycles as faces.11

In the 3-D (better 3-periodic) case we always use natural

tilings that obey the conditions that the tiling (a) conserves the

symmetry of the net (tilings that do this are termed proper).

For many high-symmetry structures this already leads to a

unique tiling, but sometimes we need to add: (b) tiles cannot

have non-face strong rings the same size as or smaller than the

smallest face and (c) all the faces of tiles are strong rings (this

means that a tile cannot have one face bigger than all the rest).

For some complex low-symmetry nets it is necessary to add

further conditions12 to lead to a unique tiling but these will not

concern us here.

Tilings for some 3-periodic nets are shown in Fig. 1. In the

first, the net is that of the –T–O–T– (here T is a tetrahedrally-

coordinated atom—Si or Al) framework of the mineral

sodalite. The intrinsic (maximum) symmetry of this net is
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Im �3m. The only possible tiling with the same symmetry

(including preserving all translations) is the one shown-a space

filling by truncated octahedra. The second example is provided

by the tiling of the net of the invariant lattice complex with

symbol Y. The natural tiling uses 3-rings and 5-rings, but, as

shown, we could use double tiles with faces that are all 5-rings

and still conserve the symmetry (P4132) so now we need rule

(b) above to give a natural tiling. A third example (also in

Fig. 1) is provided by the net of the hc closest sphere packing.

In closest packing of spheres the holes are at the centers

of octahedra and tetrahedra and a natural tiling for the net

of a closest packing should always reflect this. However in hc

octahedra and one set of tetrahedra comes in face-sharing

pairs and a tiling with these pairs fused would conserve the

symmetry (P63/mmc) so again rule (b) is required to ensure a

unique natural tiling by octahedra and tetrahedra. Notice that

an octahedron is a ‘natural’ tile so it is never split into e.g. two

square pyramids (‘half octahedra’); rule (c) ensures this.

It may be noticed in Fig. 1 that we have used 3-letter

symbols for nets; sod for the sodalite net, lcy for lattice

complex Y, etc. A database of basic nets and their crystal-

lographic properties (symmetry, coordinates, etc.) is under

construction and nets can be retrieved under these symbols.

A preliminary version of this database is to be found at http://

okeeffe-ws1.la.asu.edu/RCSR/home.htm. When the new ver-

sion is ready that address will direct to the new location.

A useful property characterizing a tiling is the transitivity,

defined as follows. Let there be p kinds of vertex, q kinds of

edge, r kinds of face and s kinds of tile. Then the transitivity is

the array of four integers pqrs. Here by kind we mean that

vertices of one kind are all related by a symmetry of the tiling

and if there are more than one kind there is no symmetry

operation relating vertices of one kind to those of another. If

there is just one kind of vertex (edge, etc.) we say that the

structure is vertex- (edge-, etc.) transitive. In the discussion

below, transitivity will be treated as if the array were a single

number and used as a measure of regularity. Thus the most

regular structures have transitivity 1111, next 1112 and so on.

Transitivity is given for some tilings in Fig. 1; notice that it is a

property of the tiling, not of the net the tiling carries.

For structures derived by tiling two-dimensional surfaces

(polyhedra etc.) there are p kinds of vertex, q kinds of edge, r

kinds of face and the transitivity is pqr.

3. Dual tilings

The concept of a polyhedron dual to an original one should be

familiar. Informally it is the polyhedron obtained by putting a

vertex in the middle of each face and joining it by edges to the

new vertices in adjacent faces. The dual of a dual is the original

polyhedron. The octahedron and cube are an example of a

mutually dual pair, as are the cuboctahedron and rhombic

dodecahedron (illustrated below), and the tetrahedron is an

example of a self-dual polyhedron. It should be clear that the

dual of a polyhedron with transitivity pqr has transitivity rqp.

The concept of duality readily transfers to 3-D tilings. Now

the vertices of the dual structure are placed inside the old tiles

and joined by edges to vertices in adjacent (face-sharing) tiles.

A number of examples of dual pairs and self-dual tilings will

be adduced later. The dual of a tiling with transitivity pqrs has

transitivity srqp. For a tiling to be self-dual it is necessary, but

not sufficient, that the transitivity be palindromic. Only in the

case of the most-symmetric nets (but these are our main

concern here) is it generally true that the dual tiling is natural.

The dual tiling always has the same symmetry as the original

of course.

It is often convenient to refer to a ‘dual’ of a net. What we

mean by this is the net carried by the tiling dual to the natural

tiling of the original net. Similarly a ‘self-dual’ net is one that

has a natural tiling that is self-dual. A self-dual net can readily

accommodate a second copy of itself in the dual position, and

it has been observed that in the great majority of crystal

structures based on pairs of interpenetrating nets, the nets

are simple self-dual nets.5

4. Edge-transitive polyhedra

In the subsequent discussion we will use the concept of

coordination figure of a vertex. This is the figure formed by

the neighbors of a vertex (more strictly the convex hull of

those neighbors) and will be a polygon or polyhedron.

The familiar regular convex polyhedra (the Platonic solids)

have one kind of face, one kind of edge and one kind of vertex,

i.e. transitivity 111 (more generally a more restrictive defini-

tion of regularity is necessary11). Notice that in the maximum

Fig. 1 Examples of natural tilings for nets. For sod the net is indicated

on the right. For lcy and tcj the tilings on the right are not natural as

explained in the text. The sets of four digits are the transitivities.
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symmetry realization (embedding), the coordination figure of

a vertex of a regular polyhedron is a regular polygon (triangle,

square or pentagon). As the regular polyhedra are the only

polyhedra with transitivity 111, it follows that the dual of a

regular polyhedron is also a regular polyhedron.

There are also two quasiregular polyhedra with one kind of

vertex and edge, but two kinds of face, i.e. transitivity 112. The

duals of these two have transitivity 211 and complete the list of

edge-transitive polyhedra which are shown in Fig. 2.

To see why we have selected these polyhedra as of special

interest, consider what we call the augmented structures in

which the vertices of the original polyhedra are replaced by a

group of vertices with the shape of the coordination figure.

This process of augmentation is usually called truncation in the

case of polyhedra, but we prefer ‘augmentation’ as we wish to

extend the concept to infinite structures where truncation is

not possible. The net of the augmented polyhedra consists of

polygons linked by edges, and in the case of augmented edge-

transitive polyhedra, the structure consists of polygons linked

by equal edges as illustrated in Fig. 2. If one wants to make a

polyhedral molecule using molecular building blocks,13 these

are the prime targets for synthesis by design. Notice that these

are the only possibilities with at most one link joining any

given pair of polygons. Prisms and antiprisms are examples of

structures containing multiple links of the same kind between

a pair of faces.

5. Edge-transitive layers and rods (cylinder tilings)

In a similar fashion we can identify the edge-transitive layers

(tilings of the plane). There are three regular structures with

transitivity 111, a quasiregular structure (kagome) with tran-

sitivity 112 and the dual of the last with transitivity 211. These

are illustrated in Fig. 3. Again we show also the augmented

structures which represent the possible ways of linking poly-

gons with one kind of link to form layers, and again these are

prime targets for synthesis by design.

For completeness we should consider also the case of tilings

of a cylinder. There is only one family of edge transitive

structures (with transitivity 111) that is obtained by tiling the

surface of a cylinder with squares. See Fig. 4.

6. Regular and quasiregular three-periodic nets

Following a hint given earlier in discussing regular polyhedra

and layers, we define a regular net as one with one kind of

vertex that in its most symmetric embedding has a coordina-

tion figure that is required by symmetry to be a regular

polygon or regular polyhedron—specifically a triangle, square,

hexagon, tetrahedron, octahedron or cube (these are the only

Fig. 2 Top two rows: the edge-transitive polyhedra. Bottom two

rows: the augmented versions.

Fig. 3 Top two rows, the edge-transitive 2-periodic nets. Bottom two

rows, the augmented version.
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possibilities compatible with crystallographic symmetry). A

quasiregular net has a vertex figure that is a quasiregular

polyhedron, namely a cuboctahedron. It is straightforward

to show these are the only possibilities and that there is just

one 3-periodic net for each case, except for the case of the

hexagon which can only lead to a 2-periodic structure.14 In

Fig. 5 we show these nets and their augmented forms and some

of their properties are listed in Table 1. They are:

srs. 3-coordinated, vertex figure triangle. The net has the

same topology as the –Si–Si– net in SrSi2, hence the symbol. It

has some special properties: it is the only chiral (symmetry

I4132) regular net and it is the only 3-coordinated 3-periodic

net with 3-fold symmetry axis at the site of the vertex (actual

symmetry 32 = D3), and thus the only 3-coordinated net with

one kind of edge.

nbo. 4-coordinated, vertex figure square. This is the net of

the atoms in NbO, hence the symbol.

dia. 4-coordinated, vertex figure tetrahedron. This is the net

of the diamond structure met above and, we hope, familiar.

pcu. 6-coordinated, vertex figure octahedron. The augmen-

ted net (linked octahedra) is the –B–B– net in CaB6 and is

given symbol cab. pcu is special in the sense that it is the net of

the only regular tiling of Euclidean space (a tiling of space by

just one kind of regular polyhedron).

bcu. 8-coordinated, vertex figure cube. This is the net of the

body-centered cubic lattice, considered as 8-coordinated (we

also like on occasion to include second-nearest neighbors to

then consider body-centered cubic as 14-coordinated, but then

the net is different and we use symbol bcu-x). The augmented

net (symbol pcb) is made up of linked cubes and sometimes

called polycubane.

fcu. 12-coordinated, vertex figure cuboctahedron. This is the

net of the face-centered cubic lattice and well known as the

structure of cubic closest sphere packing. Also familiar is the

fact that there are two kinds of hole in the structure corre-

sponding to the centers of the two kinds of tile. The tiles are

regular tetrahedra and octahedra which occur in the ration

2:1. The augmented net (symbol ubt) is the –B–B– net of UB12.

Fig. 4 The augmented version of a tiling of a cylinder by squares. This

is the only one-periodic way of linking polygons by one kind of edge.

Fig. 5 The regular and quasiregular (fcu) nets in their normal and augmented conformations.
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In deriving these nets we have made no reference to their

tilings. In fact the natural tilings have the property that those

of the regular nets have transitivity 1111 and that of the

quasiregular net has transitivity 1112. Furthermore we believe

that these are the only natural tilings of nets that have these

properties. The non-natural tiling of lcy shown in Fig. 1 has

transitivity 1111 (the natural tiling has transitivity 1121).

Fig. 6 illustrates natural tilings for the regular and quasire-

gular nets. Notice that the dual of a tiling with transitivity

1111 also has transitivity 1111. The pair nbo and bcu form a

mutually dual pair and srs, dia and pcu are self-dual (the dual

of srs is actually the opposite enantiomorph). The cubic

periodic minimal surfaces of lowest genus are known as G,

D, and D and are of considerable importance in many contexts

such liquid crystals and mesoporous materials. They divide

space into two equal parts that have a system of pores

(labyrinths) that have the structure of intergrown pairs of

srs, dia and pcu nets, respectively.

7. Semiregular three-periodic nets

Semiregular nets are defined as nets that are vertex- and edge-

transitive—i.e. that have natural tilings with transitivity 11rs

with r 4 1.15 We restrict ourselves to nets which have

embeddings in which there is no intervertex distance shorter

than the edge length, as without this restriction there are

infinite families of high-coordination vertex- and edge-transi-

tive nets.5

Table 1 lists some properties of the regular, quasiregular,

and known semiregular nets, and most of the last (lcv and ana

are omitted) are illustrated in augmented form in Fig. 7.

Notice that sometimes the same coordination figure occurs

in more than one net. Indeed there are six nets with tetrahedral

coordination figure. As discussed elsewhere7 those with the

highest point symmetry at the vertex (i.e. dia and sod) are of

the greatest importance in chemistry.

8. Edge-transitive binodal nets

The vertex- and edge-transitive nets are relevant to synthesis in

which a molecular component of a given shape is to be linked

by a ditopic linker which plays the role of edge in the net.

Often, though, one is linking together components of two

different shapes and the important structures are now the

binodal edge transitive structures.

The structures of this sort that we have identified,16

now with the restriction that there are no distances between

unlike vertices shorter than the edge lengths, are listed in Table

2, and most (pth, ifi, ibd, and iac are omitted) are shown as

augmented structures in Fig. 8. They present attractive targets

for synthesis, but of course, one must first design components

of the right shape to link together.1 When there are more than

one possibility, e.g. pts and pth for linking squares and

tetrahedra, it is generally found that the one with highest

point symmetry at the vertices (pts) dominates in observed

structures, and makes the most viable target for a designed

synthesis. In the case of linking triangles and octahedra, the

spn net, although with higher point symmetry at the vertices, is

generally less favorable than pyr, as a planar configuration at

the 3-coordinated vertices in spn brings these vertices close

together.

Table 1 Some properties of the regular, quasiregular and known
semiregular nets. ‘CN’ is coordination number and ‘CF’ is short for
coordination figure. The symmetry is the point symmetry at a vertex,
and ‘order’ refers to the order of that symmetry group

net Transitivity CN CF Symmetry Order

srs 1111 3 Triangle 32 (D3) 6
nbo 1111 4 Square 4/mmm (D4h) 16
dia 1111 4 Tetrahedron �43m (Td) 24
pcu 1111 6 Octahedron m�3m (Oh) 48
bcu 1111 8 Cube m�3m (Oh) 48
fcu 1112 12 Cuboctahedron m�3m (Oh) 48
lvt 1121 4 Rectangle 2/m (C2h) 4
sod 1121 4 Tetrahedron �42m (D2d) 8
lcs 1121 4 Tetrahedron �4 (S4) 4
lcv 1121 4 Tetrahedron 222 (D2) 4
qtz 1121 4 Tetrahedron 222 (D2) 4
hxg 1121 6 Hexagon �3m (D3d) 12
lcy 1121 6 Trigonal Metaprism 32 (D3) 6
crs 1122 6 Octahedron �3m (D3d) 12
bcs 1122 6 Octahedron �4 (C3i) 6
acs 1122 6 Trigonal prism �6m2 (D3h) 12
reo 1122 8 Tetragonal prism 4/mmm (D4h) 16
thp 1122 8 Bisdisphenoid �4 (S4) 4
rhr 1132 4 Rectangle mm2 (C2v) 4
ana 1132 4 Tetrahedron 2 (C2) 2

Fig. 6 Tilings for the regular and quasiregular nets. The ball-and-sick

sketches show the skeleton of one tile (or group of tiles for fcu) in blue,

with part of the dual net in red.
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The table has 30 entries and includes two nets, rht and sqc,

that were omitted from the original paper.16

9. Further important three-periodic nets

9.1 Minimal nets

The primitive cell of a 3-periodic net must contain at least

one 6-coordinated vertex (as in pcu, the net of the primitive

cubic lattice) or two 4-coordinated vertices (as in diamond,

dia) for there to be links in positive and negative senses in

three different directions. (A pair of 4-coodinated vertices

linked by a common edge have six remaining links).

Beukemann and Klee17 have shown that here are 15 such

3-periodic minimal nets. They include the regular nets (srs,

dia and pcu) with self-dual tilings.18 Here we call attention to

two others of special interest in crystal chemistry. These are

ths with (like srs) four 3-coordinated vertices per primitive

unit cell and cds with (like dia) two 4-coordinated vertices

per primitive unit cell. Some properties of these nets are listed

in Table 3, and they are illustrated in Fig. 9. It is easy to

show18 that the dual of a minimal net must be another minimal

net. Of particular interest is the fact that the cds net is self dual.

An extended discussion of the this net has been given else-

where.19

9.2 Rod nets

The two nets of the previous section can be interpreted as

made up of rods running in layers with the rod directions at

901 in successive layers. In the case of ths the coordinates are

modified to make the rods straight lines as shown in Fig. 10,

and the net is symbolized ths-z. They are examples of nets

based on rod packings (packings of cylinders are examples of

rod packings) and in this case the rod axes are coincident with

symmetry axes and have fixed coordinates. There are 14 such

invariant rod packings.20 Those with parallel rods are simply

derived from invariant circle packings, but there are two more

with rods in parallel layers that are of special interest (the rest

are 3-way or 4-way cubic patterns). These are illustrated in

Fig. 10 and some properties listed in Table 3. qzd is of some

interest as the dual of the net (qtz) derived from the quartz

structure.19

9.3. Five-coordinated nets

Five-coordinated structures are fairly common but it should

be clear that they cannot be edge-transitive as there is no

crystallographic symmetry with order that is a multiple of five.

There are just two topologies for a coordination figure, viz.

trigonal bipyramid and square prism, and simple high-sym-

metry nets can be constructed for both vertex figures as shown

in Fig. 11. It is found that these dominate in observed

structures.7

Table 2 Some properties of binodal edge-transitive nets. ‘CN’ is
coordination number and ‘CF’ is short for coordination figure. ‘order’
refers to the order of the point symmetry at the vertices

net Transitivity CN CF Order

pto 2122 3, 4 Triangle, square 6, 8
tbo 2123 3, 4 Triangle, rectangle 6, 8
bor 2122 3, 4 Triangle, tetrahedon 6, 8
ctn 2122 3, 4 Triangle, tetrahedon 3, 4
pyr 2112 3, 6 Triangle, octahedon 3, 6
spn 2122 3, 6 Triangle, octahedon 6, 12
the 2123 3, 8 Triangle, tetragonal prism 6, 16
ttt 2123 3, 12 Triangle, truncated tetrahedron 6, 24
rht 2123 3, 24 Triangle, rhombicuboctahedron 6,48
pts 2132 4, 4 Square, tetrahedron 8, 8
pth 2132 4, 4 Square, tetrahedron 4, 4
soc 2122 4, 6 Square, octahedron 8, 12
she 2122 4, 6 Square, hexagon 8, 12
stp 2133 4, 6 Rectangle, trigonal prism 8, 24
sqc 2132 4, 8 Rectangle, tetragonal prism 4, 8
scu 2133 4, 8 Rectangle, tetragonal prism 8, 16
shp 2133 4, 12 Rectangle, hexagonal prism 8, 24
ftw 2112 4, 12 Square, cuboctahedron 16, 48
toc 2122 4, 6 Tetrahedron, octahedron 8, 12
gar 2122 4, 6 Tetrahedron, octahedron 4, 6
ibd 2122 4, 6 Tetrahedron, octahedron 4, 6
iac 2123 4, 6 Tetrahedron, octahedron 4, 6
ifi 21.. 4, 6 Tetrahedron, octahedron 4, 6
flu 2111 4, 8 Tetrahedron, cube 24, 48
ith 2122 4, 12 Tetrahedron, icosahedron 8, 24
twf 2123 4, 24 Tetrahedron, truncated octahedron 8, 48
nia 2122 6, 6 Octahedron, trigonal prism 12, 12
ocu 2123 6, 8 Octahedron, tetragonal prism 12, 16
alb 2134 6, 12 Trigonal prism, hexagonal prism 12, 24
mgc 2123 6, 12 Hexagon, truncated tetrahedron 12, 24

Fig. 7 Some semiregular nets shown in augmented form.
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9.4. Two more 4-coordinated nets: sra and crb

There are two more nets that are not uncommon in MOFs7

and worth mentioning here. The commonest rod-like SBU has

the underlying topology of a ladder and the simplest mode of

linking ladders to form a 3-periodic nets is in the net sra (this is

the Al net of the common structure type of SrAl2).
20 The other

net of this section is crb—this is the net of the B atoms in CrB4

but also form the basis of MOF structures and some low-

density sulfides.21 They are illustrated in Fig. 12 and some

properties listed in Table 3.

10. Further considerations for designed synthesis

Here we have described the nets that we believe are some of the

most important for targeted synthesis of structures. This is just

the beginning of the story however. For example, we have

listed nine ways of linking squares by one kind of edge. To

determine which, if any, of these will be obtained in a synthesis

one must not only assure that the square SBU is prepared, but

design a linker of suitable shape to select one possibility. How

to do this has been discussed elsewhere in a paper22 that

describes the synthesis of five of these possibilities, and a sixth

has been achieved by design subsequently.23

In particular, once one has established the conditions to

produce a certain MOF of given topology for a certain

combination of shapes, it is possible then to produce a suite

of materials with the same topology but different organic SBU.

Such series of compounds are called isoreticular.24

However, chemistry will always be first an experimental

science and surprises abound.25 We give one example where

the surprise was pleasant. A first attempt at linking octahedral

and triangular SBUs resulted in a structure with the expected

Fig. 9 The ths and cds minimal nets.

Table 3 Some properties of additional uninodal nets. ‘CN’ is
coordination number and ‘CF’ is short for coordination figure. The
symmetry is the point symmetry at a vertex, and ‘order’ refers to the
order of that symmetry group

net Transitivity CN CF Symmetry Order

ths 1211 3 T or Y mm2 (C2v) 4
cds 1221 4 Rectangle mmm (D4h) 8
bto 1221 3 T or Y 2 (C2) 2
qzd 1211 4 Rectangle 222 (D2) 4
sqp 1222 5 Square pyramid 4mm (C4v) 8
bnn 1221 5 Trigonal bipyramid �6m2 (D3h) 12
sra 1331 4 Tetrahedron m (Cs) 2
crb 1232 4 Tetrahedron mm2 (C2v) 4

Fig. 8 (a). Twelve of the binodal edge-transitive nets in augmented form. (b) Twelve more binodal edge-transitive nets in augmeted form.
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pyr topology (there are good reasons not to expect the other

3,6-coordinated topology of Table 2, see Section 8). The pyrite

net is self-dual and, also as expected, a pair of intergrown

structures resulted.26 However using a different triangular

organic SBU a different, but closely related topology, was

found, that could be rationalized by hindsight.27 The nice part

though is that this second structure is not self-dual and is not

interpenetrated, and in fact the material was of unprecedented

openness.

The considerations of this paper are of little consequence to

the designed synthesis of materials such as zeolites. Indeed of

the more than 150 known zeolites only SOD (sod) BCT (crb)

and ABW (sra) are based on topologies mentioned in this

account (here zeolite framework codes28 are given in upper

case). It is worth noting in this context that in MOFs consist-

ing of tetrahedral cations, T, joined by imidazolate linkers, Im,

many structures are observed, the majority of them having the

topology of uninodal silicate zeolite frameworks.29 This is

readily understood as the T–Im–T angle is close to 1451, an

angle close to that generally preferred for Si–O–Si links.
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11 B. Grünbaum, Aequationes Math., 1977, 16, 1–20.
12 V. A. Blatov, O. Delgado-Friedrichs, M. O’Keeffe and D. M.

Proserpio, to be published.
13 S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100,

853–908.
14 O. Delgado-Friedrichs, M. O’Keeffe and O. M. Yaghi, Acta

Crystallogr., Sect. A, 2003, 59, 22–27.
15 O. Delgado-Friedrichs, M. O’Keeffe and O. M. Yaghi, Acta

Crystallogr., Sect. A, 2003, 59, 515–525.
16 O. Delgado-Friedrichs, M. O’Keeffe and O. M. Yaghi, Acta

Crystallogr., Sect. A, 2006, 62, 350–355.
17 A. Beukemann and W. E. Klee, Z. Kristallogr., 1992, 201, 37–51.
18 C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe and O. M.

Yaghi, Acta Crystallogr., Sect. A, 2004, 60, 517–520.
19 O. Delgado Friedrichs, M. O’Keeffe and O. M. Yaghi, Solid State

Sci., 2003, 5, 73–78.
20 N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe and O. M.

Yaghi, J. Am. Chem. Soc., 2005, 127, 1504–1518.
21 H. Li, A. Laine, M. O’Keeffe and O. M. Yaghi, Science, 1999, 283,

1145–1147.
22 M. Eddaoudi, J. Kim, D. Vodak, A. Sudik, J. Wachter, M.

O’Keeffe and O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A., 2002,
99, 4900–4904.

Fig. 10 Examples of rod nets.

Fig. 11 Two 5-coordinated nets shown augmented.

Fig. 12 The sra and crb nets.

1042 | Phys. Chem. Chem. Phys., 2007, 9, 1035–1043 This journal is �c the Owner Societies 2007



23 Z. Ni, A. Yassar, T. Antoun and O. M. Yaghi, J. Am. Chem. Soc.,
2005, 127, 12752–12753.

24 (a) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M.
O’Keeffe and O. M. Yaghi, Science, 2002, 295, 469–472; (b) S.
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27 H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J.
Matzger, M. O’Keeffe and O. M. Yaghi, Nature, 2004, 427, 523–527.

28 Ch. Baerlocher, W. M. Meier and D. H. Olsen, Atlas of Zeolite
Framework Types, Elsevier, Amsterdam, 2001, http://www.
iza-structure.org/databases/.

29 (a) K. Park, Z. Ni, A. P. Côté, J.-T. Choi, J. Uribe-Romo, H. K.
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