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SECTION 1: TUTORIAL

Frameworks for Extended Solids: Geometrical Design Principles

M. O'Kee!e,* M. Eddaoudi,- Hailian Li,* T. Reineke,- and O. M. Yaghi-
Materials Design and Discovery Group, *Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604; and

-Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055

&&2it [is] clear that practically any structure which seems topologically reasonable can be made, and that increased symmetry, ceteris paribus,
imparts increased stability.'' A. R. von Hippel (1)

&&The synthesis of new structures requires not only chemical skill but also some knowledge of the principal topological possibilities.''
G. O. Brunner (2)
The basic geometries for three-dimensional low-connectivity
nets are described. Examples of open framework solids with
these topologies are adduced for illustration. Attention is drawn
to methods of producing open frameworks by decoration and
expansion of simple nets. ( 2000 Academic Press

INTRODUCTION

In this tutorial article we present the basic topologies
(nets) that underlie most low-density (&&open'') structures.
For illustration we give some examples, often from our own
work, of clusters and linkages that are assembled into
frameworks, but the main emphasis is on the topologies that
can be expected to form and which might reasonably be the
target of a designed synthesis. It is our thesis that a few
(about a dozen) simple high-symmetry topologies are of
paramount importance, and we describe these.1 It is our
objective to outline the important connections existing
between simple nets and extended structures that are assem-
bled from molecular building blocks.

NOMENCLATURE AND DEFINITIONS

Nets and vertex symbols. Following common usage we
de"ne an N-connected net to be one in which all vertices are
linked to N neighbors (note that the term &&N-connected''
has a quite di!erent meaning in mathematics). In an (N,M)-
connected net some vertices are connected to N neighbors
and some to M neighbors. A special geometry of the net is
1Recall that very many coordination polyhedra can, and do, appear in
molecules and crystals, but a few simple, high-symmetry "gures such as
tetrahedra and octahedra predominate.

3

one in which all edges (links between vertices) are of equal
length and this corresponds to the shortest distance be-
tween vertices. The structure is often referred to an N-
coordinated sphere packing in this special con"guration,
which often (by no means always) is the one of most interest
in crystal chemistry. Nets with just one kind of vertex (all
vertices related by symmetry) are called uninodal: the corre-
sponding sphere packing is sometimes referred to as
homogenous.

3- and 4-connected nets, particularly uninodal ones, are
conveniently characterized by a vertex symbol (3, 4); in this
symbol a number speci"es the size of the smallest ring
contained in an angle, and a subscript if present indicates
that more than one ring of speci"ed size is contained in that
angle and gives their number. For example, in the 4-connec-
ted diamond structure every angle contains two 6-mem-
bered rings (Fig. 1) and, as in a 4-connected net there are six
angles at a vertex, the symbol is 6

2
) 6

2
) 6

2
) 6

2
) 6

2
) 6

2
. In a

3-connected net there are three angles and the symbol for
the most-symmetrical such net (named after SrSi

2
) is

10
5
) 10

5
) 10

5
. There may be, indeed there often are (but not

in these examples), larger rings in the structure. Note that, in
contrast to some earlier workers, we use &&ring'' in a sense
consistent with chemical usage (&&benzene ring'') and distin-
guish it from a circuit which may contain &&shortcuts'' (3). In
anthracene C

10
H

8
, which may be considered as formed

from two edge-sharing benzene rings, there is a 10-mem-
bered circuit around the molecule, but this is not a ring in
our sense.

Nets in which all vertices, edges, and angles are equivalent
by symmetry are referred to as regular. Those that have all
edges, but not all angles, equal are referred to as quasi-
regular. We argue that these are of special importance in
crystal chemistry.
0022-4596/00 $35.00
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FIG. 1. Left: a fragment of the diamond net with two 6-membered
rings emphasized. On the right the same two rings are shown; note that one
angle is common to both rings.
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Porous frameworks produced by decoration, augmentation,
and expansion of nets. The term decoration was introduced
(5) to describe the process of replacing a vertex by a group of
vertices. It was earlier pointed out by Hansen (6, 7) that
processes of this sort can lead to low density structures. For
example, condensing ten indium sul"de tetrahedra produces
a ¹3 supertetrahedron, In

10
S10~
20

(presented below in
Fig. 8), and when these are further condensed, indium sul-
"de frameworks with giant cavities are produced (8). One of
these adopts a decorated diamond topology where each
vertex in the diamond net has been replaced by a ¹3
In

10
S2~
16

tetrahedral unit. In other words, each of the
vertices in the 4-connected diamond net has been replaced
by ten indium sul"de tetrahedra. A special case of decora-
tion is augmentation; this is replacement of the vertices of an
N-connected net by a group of N-vertices as in the CaB

6
framework. Here, B

6
units augment the 6-connected vertices

on the simple cubic net. In the MnGe
4
S2~
10

framework, Ge
4

units augment half the 4-connected vertices on the diamond
net: the other half are occupied by Mn (9).

Another strategy for producing porous frameworks is to
increase the spacing between vertices in a net by using
longer links, which in principle means that a bond is re-
placed by a sequence of bonds*a process we call expansion.
In a strict sense, the MnGe

4
S2~
10

example just discussed is
also expanded, since vertices (metal atoms) on the partly
augmented diamond net have been spaced apart by }S}
atom links. Framework aluminosilicates and zeolites are
familiar examples of expanded 4-connected nets with edges
of the underlying 4-connected net replaced by }O} links.

In metal-organic frameworks, the use of longer links such
as 4,4@-bipyridine (bpy) has resulted in greatly expanded 3-D
nets, albeit interpenetrated, as in Cu(bpy)

2
(10, 11), where

the ditopic bpy spacers link Cu(I) atoms that de"ne the 4-
connected vertices of the diamond net. The bis(adiponitrile)
copper(I) nitrate compound is an earlier example of an
expanded diamond network (12).

Porous cyanides have been studied extensively, and we
give a number of examples below. The familiar Prussian
blue framework has ideal composition MM@(CN)

6
(13). This

an example of an expanded simple cubic net, now with
}C}N} links replacing the original edges of the net (notice
that in actual fact the ordering of M and M@ produces
a face-centered cubic structure of double the cell edge).

An increasing number of assembled frameworks have as
components polytopic grouping of linkers, which in them-
selves may act to decorate a vertex in an assembly. For
example, 1,3,5-benzenetricarboxylate (BTC) (the anion of
trimesic acid) is a tritopic linker with a central triangular
unit which can in turn be linked to three cationic units as in
Zn

2
(BTC)(NO

3
) network of MOF-4 (14). The central

C
6

unit of BTC is linked to three Zn
2
(}CO

2
)
3

units, which
decorate the Si net of the SrSi

2
extended structure. Poly-

topic links can thus be employed both to decorate and to
expand a net. This strategy has been used to good e!ect
(15, 16) with 2,4,6-tri(4-pyridyl)-1,3,5-triazene (TPT), where
three pyridyl units NC

4
H

4
} are linked to the three C atoms

of a central C
3
N

3
(pyrazine) ring; again there is a central

triangular unit with attached linkers, which can join to
cationic units. Many other examples will be found in the
pages of this volume and in Refs. (17}19).

Molecular building blocks and secondary building units.
Given the relevance of cluster and coordination polyhedron
entities in determining the topology of the resulting ex-
tended assembly, it is useful to make a distinction between
such entities based on whether they are employed as starting
points in the synthesis or whether they form in situ. For
example, the tetrahedral Ge

4
S4~
10

cluster is considered a mo-
lecular building block (MBB) since it was employed as
a synthetic unit which was copolymerized with Mn(II) to
form the extended network MnGe

4
S2~
10

. When polytopic
units are copolymerized with metal ions, it is common to
recognize linked cluster entities in the assembled solid. Each
such cluster is considered a secondary building unit (SBU),
in that it is a conceptual unit which was not employed in the
synthesis as a distinct molecular entity in the same manner
described for tetrahedral germanium sul"de cluster.

We cite a recent example (20) that illustrates the utility of
SBUs in the design of a framework with exceptional low
density and high stability. Copolymerization of Zn(II) with
linear terephthalate anions (ditopic linker), [OOC}C

6
H

4
}

COO]2~ (abbreviated to BDC for 1,4-benzenedicarboxy-
late) yields a framework formulated as Zn

4
O(BDC)

3
. Here,

Zn
4
O6` clusters are linked by six BDC anions to form an

octahedral geometry (Fig. 2) having the same topology as
that of the B network in CaB

6
(described below). From the

point of view of the topology we like to think of this
structure as composed of octahedral [Zn

4
O](O

2
C)

6
SBUs

that are joined by }C
6
H

4
} links. The role of MBBs and

SBUs in the design of robust porous frameworks with
functionalized pores has been described (21).

FRAMEWORK TOPOLOGIES

There is a large literature on enumeration and descrip-
tion of low-coordination structures (nets), work that is



FIG. 2. The building units of Zn
4
O(BDC)

3
: (a) A central OZn

4
unit ("lled circles are Zn) linked to six CO

2
units of BDC groups (shaded circles are C).

(b) The same with four ZnO
4
tetrahedra shaded. (c) The same with the C

6
octahedron shaded. (d) The BDC anion (open circles are O and shaded circles are

C). (e) The same with just the carboxylate C atoms joined by a link. Joining the octahedra with the links produces the CaB
6
topology (shown in Fig. 19 below).
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associated particularly with Wells (22, 23) and Smith (24).
However, as mentioned above, it is our thesis that in general
only a small number of simple, high-symmetry structures
will be of overriding general importance,2 and these are
described here. Some of the material can be found in Wells'
books (22, 23) or in O'Kee!e and Hyde (3). For simplicity
we restrict ourselves to three-dimensional structures: it must
be part of the designer's art to avoid formation of lower-
dimensional structures such as layer structures, unless of
course (as may be), such a structure is the target of the
synthesis.

3-Connected nets. A rigorous enumeration of all homo-
genous 3-coordinated sphere packings has been made by
Koch and Fischer (25). There are only 52 of them, of which
46 remain 3-coordinated in their maximum volume form. Of
these structures only one has site symmetry at a vertex that
contains a 3-fold axis and this is therefore the only structure
in which the three angles are equivalent (related by sym-
metry) and thus the only regular 3-connected net (Table 1).
This is illustrated in Fig. 3. The structure is often named for
SrSi2 as the Si arrangement in that compound has that
topology. In its maximum symmetry form the net has sym-
metry I4

1
32 and the vertices are either at positions 8 a

(1/8,1/8,1/8 etc.) or at positions 8 b (7/8,7/8,7/8) and the
vertex point symmetry is 32 (D

3
). Notice that the net is chiral

and that the two sets of positions refer to enantiomorphic
2We know of no systematic survey of the occurrence of structural
topologies, and when we say that a particular topology is very common we
really mean that it occurs very frequently in structures that we are likely to
have examined and analyzed the geometry of.
forms (often symbolized `>* or ~>*, respectively). It is
interesting, even astonishing, that the simplest and most
symmetrical three-dimensional way of assembling (generally
FIG. 3. A sketch of the SrSi
2

net. A 10-membered ring is outlined. See
also Fig. 6.



TABLE 1
The Two Most-Important 3-Connected Nets

Name s.g. Wycko! p.g. Z Vertex symbol s.g. (AB)

SrSi
2

I4
1
32 a or b 32 (D

3
) 4 10

5
) 10

5
) 10

5
P2

1
3

ThSi
2

I4
1
/amd e mm2 (C

2v
) 4 10

2
) 10

4
) 10

4
I4

1
md

Note. s.g. is space group, p.g. is point group, Z is the number of vertices in
the topological unit, and s.g. (AB) is the space group for the ordered AB
structure with two kinds of vertex.
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achiral) modules with 3-fold symmetry (and the only way
that preserves local 3-fold symmetry) leads to a chiral struc-
ture. As mentioned above, this structure is adopted by
Zn

2
(BTC)NO

3
framework, in which Zn(}CO

2
)
3

SBUs and
benzene units alternately decorate the vertices of the Si net
of SrSi

2
.

Only two of the remaining nets have site symmetry with
order greater than 2; these both have site symmetry mm2
(C

2v
). They are the one named for ¹hSi2 (Fig. 4) and a third

with vertex symbol 4 ) 12
2
) 12

2
(Fig. 9, below). The minimum

number of vertices in the repeat unit of a 3-connected net is
four (22), and only the SrSi

2
and ThSi

2
nets have this
FIG. 4. Left: a fragment of the ThSi
2

net (heavy lines); a unit cell (edges a
The unit cell for the interpenetrated structure has edges a@ and c@. Right: t
a T con"guration.
number of vertices in the repeat unit (this is the same as the
number of vertice in the primitive cell of the structure in its
most symmetrical conformation). We therefore consider
these two nets to be the basic 3-connected three-dimen-
sional nets. (The familiar honeycomb or graphite layer, 63, is
of course the simplest two-dimensional 3-connected net.)
They account for the topology of the great majority of all
known structures that are based on 3-connected nets and
are the most likely targets for a successful designed syn-
thesis. In both these structures all the rings are 10-rings and
the vertex symbols are for SrSi

2
: 10

5
) 10

5
) 10

5
and for ThSi

2
:

10
2
) 10

4
) 10

4
.

The ThSi
2
net is particularly common in structures where

there are two distinct kinds of link arranged as a T (often
with the arms di!erent length from the upright) (26}28)
although examples of open structures with triangular co-
ordination are known (22). We consider it to be the basic net
formed from T-shaped SBUs.

A uninodal net with vertex symbol 12
4
) 12

7
) 12

7
and

symmetry P6
2
22 is known (3); in Wells' (16) terminology it is

(12, 3). An elegant variation of this net with symmetry P3
2
21

has been described by Abrahams et al. (10) in which one half
of the vertices have three equal angles of 1203 and the other
and c) is shown. A second interpenetrating net is shown in lighter shading.
he same ThSi

2
topology with edges meeting at vertices (shaded circle) in



FIG. 5. A conformation of the 123 net. Open circles are on 1203
vertices and "lled circles are on T vertices. Only those on two intertwined
3
1

screws (heavier lines) are shown. Two catenated 12-rings are shown on
the right.
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half have a T con"guration. Although this is only one
example of this net to date, it provides an attractive target
for a designed synthesis. There are several other points of
interest: (a) In the con"guration with alternating equilateral
triangular and T vertices and equal edges, the distance
between some pairs of vertices that are not directly linked is
the same as the edge length. (b) In addition to 12-rings, the
net contains 14-rings. An extended vertex symbol that
shows the complete ring count is 12

4
14

12
) 12

7
14

8
) 12

7
14

8
.

(c) As Abrahams et al. point out, the 12-rings are catenated
(pass through each other). We illustrate this net in Fig. 5*
the reader will probably agree that enumerating rings is not
easy. As it is the only uninodal net with 12-rings, we identify
it by the short symbol 123.
FIG. 6. Left: intergrowth of two >* (SrSi
2
) nets of opposite hand shown i

same in clinographic projection.
The structure in which two enantiomorphous SrSi
2

nets
are intergrown is of interest (Fig. 6). The symmetry is now
Ia31 d (centrosymmetric) with vertices in positions 16 b. The
closest distance of approach of vertices of di!erent nets is
J(3/2)"1.225 times the edge length. The G minimal sur-
face, which is one of the three basic cubic minimal surfaces
(29), separates the two networks. This G surface occurs in
many contexts, for example, as the cubic surface of bicon-
tinuous phases in water}lipid and water}surfactant systems.
In the cubic mesoporous material MCM-48, which is for-
med from a water}surfactant template (30) the polycrystal-
line matrix follows the shape of the G (gyroid) surface
(31, 32). The structure of c-Si (a metastable high-pressure
phase) is derived from the two intergrown SrSi

2
nets by

a small distortion (lowering the symmetry to Ia31 ) such that
the nearest approach of Si atoms on the two nets becomes
equal to the bond length in each net and the structure
becomes 4-connected (3). Other examples of intergrowths
are given by Batten and Robson (33).

It should be mentioned that Wells (23) devoted a chapter
(which appears not to have been widely read) to interpenet-
rating nets. He points out, for example, that cubic closest
packing (fcc) can be subdivided into four SrSi

2
nets either of

the same hand or two of each hand, so the structure as
a sphere packing has exactly 1/4 the density of closest sphere
packing.

Intergrowths of ThSi
2

nets are also common. In the
simplest case, two interpenetrating nets are displaced by half
the c repeat distance of the tetragonal unit cell. There are
several points of interest. (i) The symmetry of the two
intergrown structures is di!erent; it is now P4

2
/nmm and

the unit cell is smaller with a@"a/J2 and c@"c/2 so the
volume is 1/4 of the body-centered unit cell for the single
net and again contains just 4 vertices in the repeat unit
n projection on [001]. Numbers are elevations in multiples of c/8. Right: the



FIG. 7. Comparison of the diamond (left) and lonsdaleite (right) nets.
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(see Fig. 6). (ii) With edges all of unit length, the vertices on
one net have two vertices of the other net the same distance
away as vertices on the same net, so considered just as
a packing of equidistant vertices (i.e., as a sphere packing)
the structure is 5-coordinated (we see the same sort of
behavior in intergrown diamond nets below) and the sym-
metry is actually I4/mmm (see Fig. 15, below).

In many instances, particularly with long linkers, there
are multiple intergrowths and the distance between vertices
on di!erent intergrown nets are shorter than in the same
net. For examples see Ref. (33).

4-Connected nets. There is no treatment of 4-connected
structures analogous to that of Koch and Fischer (25) for
3-coordinated sphere packing, but we can easily enumerate
the uninodal ones with all edges related by symmetry (regu-
lar or quasiregular). For all edges to be equivalent the vertex
site symmetry must be 222 (D

2
) or higher (i.e., a supergroup

of 222) and thus have point symmetry with an invariant
point (rather than invariant line or plane). As the vertices
are all related by symmetry it follows that the structure must
correspond to an invariant lattice complex (i.e., all coordi-
nates are 0 or a simple fraction, rather than variable x, y, or
z). These lattice complexes have been known since the early
days of crystallography, and are listed in, for example, the
&&International Tables for Crystallography'' (34). Those cor-
responding to 4-connected nets are listed in Table 2.

For all angles to be related by symmetry, the point group
must be 41 3m (¹

d
). It may be seen, therefore, that the dia-

mond net is the only regular 4-connected net (Fig. 7). It is of
course ubiquitous in crystal chemistry. The form of silica
based on the expanded diamond net is cristobalite, and
TABLE 2
Some Important 4-Connected Nets

Symbol Name s.g. Wycko! p.g. Z Vertex symbol

D Diamond Fd31 m a 41 3m (¹
d
) 2 6

2
)6

2
)6

2
)6

2
)6

2
)6

2
J* NbO Im31 m b 4/mmm (D

4h
) 3 6

2
)6

2
)6

2
)6

2
)8

2
)8

2
Q Quartz P6

2
22 a 222 (D

2
) 3 6)6)6

2
)6

2
)8

7
)8

7
=* Sodalite Im31 m d 41 m2 (D

2d
) 6 4)4)6)6)6)6

< I4
1
32 c 222 (D

2
) 6 3)3)10

2
)10

2
)10

3
)10

3
S* Ia31 d d 41 (S

4
) 12 6)6)6

2
)6

2
)6

2
)6

2
Lonsdaleite P6

3
/mmc f 3m (C

3v
) 4 6

2
)6

2
)6

2
)6

2
)6

2
)

CdSO
4

P4
2
/mmc a mmm (D

2h
) 2 6)6)6)6)6

2
)*

CrB
4

I4/mmm g mm2 (C
2v

) 4 4)6
2
)6)6)6)6

SrAl
2

Imma i m 4 4)6)4)6)6)8
2
6
2

Moganite Cmmm a mmm 1 4)4)6
2
)6

2
)8

4
)8

4
h mm2 2 4)8

6
)6)6)6)6

PtS P4
2
/mmc c mmm (D

2h
) 2 4)4)8

2
)8

2
)8

2
)8

2
f 41 m2 (D

2d
) 2 4)4)8

7
)8

7
)8

7
)87

Note. The "rst listed is the only regular net and the next "ve are quasiregular.
These six correspond to invariant lattice complexes and their symbols (25) are
given. The last net has two vertices and has entries on two lines.
there are many materials, including nitrides, chalcogenides,
phosphides, halides, and ice I

#
, based on this topology (35),

far too many compounds to be listed here. The net of all the
atoms in the sphalerite (ZnS) structure is diamond, so it is an
AB derivative. The diamond net is unique in that expanded
¹X

2
compounds (&&cristobalites'') can be made with that

topology with regular ¹X
4

tetrahedra and with a very wide
range of X}¹}X angles (3, 35). When this angle is 1803 the
structure has maximum volume and the symmetry is Fd31 m.
The angle can be reduced by concerted tilts of the ¹X

4
tetrahedra in a number of ways which reduce the symmetry.
In two special tilt systems, when the ¹}X}¹ angle is 109.53
the X arrangement corresponds to close packing. In one,
which has symmetry I41 2d, the packing is cubic (ccp) and in
a second, with symmetry Pna2

1
, the packing is hexagonal

(hcp). It is this ability to accommodate a wide range of
¹}X}¹ angles that allows the topology to occur for such
di!erent materials as SiO

2
(Si}O}Si+1453) and ZnCl

2
(Zn}Cl}Zn+1093).

The decorated diamond net commonly occurs in struc-
tures with two intergrown nets. Recall that the cristobalite
¹X

2
(derived from diamond) has lowest density with

¹}X}¹"1803 and that the combination of two such nets
intergrown leads to ccp X (for example, the Cu in Cu

2
O).

In the collapsed single net with symmetry I41 2d with
¹}X}¹"109.53 the X atoms are again in ccp. In com-
pounds with the ZnI

2
structure (36) (one form of GeS

2
is

another example) there are four ZnI
4

tetrahedra condensed
into a ¹2 supertetrahedron Zn

4
I
10

(Fig. 8); corner sharing
of the supertetrahedra produces stoichiometry ¹

4
X

8
, i.e.,

¹X
2
. Two collapsed decorated nets with ¹}X}¹"109.53

interpenetrate (the symmetry is now I4
1
/acd) and again the

X arrangement is ccp so an &&open'' structure is not achieved.
Other examples of interpenetrated networks of the same
structure are b-Ca

3
Ga

2
N

4
(37) and Na

2
SnAs

2
(38), in which

Ca or Na are in the interstices between the interpenetrating
nets.

Condensing eight tetrahedra produces a ¹3 super-
tetrahedron (Fig. 8) and when these are condensed into



FIG. 8. Left: a ¹2 supertetrahedron ¹
4
X

10
formed by condensing four ¹X

4
tetrahedra, Right: a ¹3 supertetrahedron ¹

8
X

20
.
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a framework the stoichiometry is, per unit, ¹
10

X
18

. Indium
sul"de frameworks with the diamond topology have been
made both with two interpenetrating nets (39) and without
(40); the choice of base neutralizing the In

10
S6~
18

framework
is critical in determining whether there is interpenetration or
not. The uninterpenetrated structure has very large cavities.

Lonsdaleite is a rare form of 4-coordinated carbon with
a structure (3) that is related to, but distinct from, that of
diamond (the two structures are compared in Fig. 7). The
AB derivative is the familiar wurtzite form of ZnS and the
SiO

2
polymorph with the lonsdaleite topology is tridymite.

Unlike cristobalite, tridymite cannot be made in any simple
way with all ¹}X}¹ angles equal and less than 1803, and
tridymite forms of silica have complex structures; for this
reason too, corresponding halides, sul"des, etc., are not
known.
FIG. 9. Left: a fragment of the NbO net. Right: the 3-connected net 4.12.1
by squares.
Considerable confusion has arisen because in the many
compounds with the NaFeO

2
structure (35) the net of all the

atoms is lonsdaleite, but materials of this class are better
considered as stu!ed &&FeO

2
'' (the strong bonds are Fe}O)

and the FeO
2

is in fact the Pna2
1

form of cristobalite, which
is of course based on the diamond net.

Of the other 4-connected nets, the two most important
are the ones with high point symmetry, viz. NbO and
sodalite. The NbO net (Fig. 9) is the structure of all the
atoms in NbO. It provides a rare example of a 4-connected
net with square-planar coordination of vertices. Its import-
ance is mainly as a basic topology underlying more complex
structures, although it does occur, very slightly deformed
from cubic symmetry, as the Te net in AgTe

3
(41).

The remaining net with high-symmetry vertices is the
sodalite net (Fig. 10). It is the net of the tetrahedral atoms
2 derived by replacing the vertices of the NbO net (shaded circles on the left)



FIG. 10. Aspects of the sodalite net. Top left: a packing of truncated
octahedra. Top right: the net of the vertices and edges of this packing.
Bottom left: an outline of one truncated octahedron. Bottom middle and
right: part of a framework of corner-connected ¹X

4
tetrahedra (open

circles are X atoms) with ¹}X}¹"160.63 (middle) and 109.53 (left).
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(Al and Si) in sodalite, ideal formula Na
4
Al

3
Si

3
O

12
Cl. An

enormous number of compounds are known with structures
based on this expanded topology, including oxides, sul"des
(tetrahedrites) (42), nitrides (43, 44), halides (45), clathrate
hydrates, and intermetallic structures (a-Mn structure type)
(30). Like diamond, the net can accommodate a range of
¹}X}¹ angles (3, 46) and this accounts for its widespread
occurrence. However the maximum angle and maximum
symmetry is for 160.63. For a structure with regular tet-
rahedra, there appears to be only one way to reduce the
¹}X}¹ angle and when it is 109.53 the X arrangement is
incomplete (3/4) ccp. For the symmetry of derived structures
see Ref. (3). In aluminosilicates and related materials the
¹}X}¹ angle is about 1453, but in materials such as sul"des
and halides it is close to 1093. Recently a sodalite-derived
sul"de based on supertetrahedral clusters (again with
¹}X}¹ angles close to 1093) with giant pores has been
described (8). We should note that so far virtually all the
occurrences of this topology are based on corner-sharing
tetrahedral clusters such as ¹X

4
with ¹}X}¹ links, rather

than with extended links that occur so often for the dia-
mond topology.

The augmented sodalite structure is of special interest as
it represents the position of the vertices in the least dense
stable sphere packing (5, 47) (in a stable sphere packing,
each sphere is surrounded by at least four other spheres with
points of contact not all on the same hemisphere). We have
already mentioned indium sul"de structures (8) with giant
pores in which the vertices of a sodalite net are decorated
with In

10
S
20

supertetrahedra.
If the original 4-connected net had square coordination

then the augmentation process is the replacement of vertices
by squares. The simplest example of augmentation by
squares is the conversion of the NbO net into a 3-connected
net (Fig. 9). This net was referred to above in connection
with high-symmetry 3-connected nets. An example (48)
of its occurrence is in the structure of zinc squarate (the
squarate anion is C

4
O2~

4
) in which ZnO

4
squares and

C
4

squares are linked by the C}O bonds. Large cavities in
the reported structure are "lled by water and acetic acid
molecules.

We list the remaining quasiregular 4-connected nets in
Table 2; the quartz net is perhaps the most important of
these, as it represents the topology of the most stable form of
silica, the second most common crystalline material on the
surface of the earth, and a material of considerable techno-
logical importance. The structure is not found for sul"des or
chlorides, as small ¹}X}¹ angles are not possible without
unreasonably small X2X distances, although a form of
BeF

2
has the quartz structure. A nice example (49) of an

expanded version of the quartz structure is found in
ZnAu

2
(CN)

4
: here tetrahedral Zn atoms are linked by ap-

proximately linear }N}C}Au}C}N} groups. The Zn atoms
are +10 A_ apart (compare Si2Si+3 A_ in quartz). Alter-
natively, and equivalently, we could describe the structure
as a decorated quartz net (see below) in which ZnN

4
tet-

rahedra are joined by }C}Au}C} links. In the actual struc-
ture, six such nets interpenetrate to make a dense material.
Interestingly the same structure had been found earlier (50)
in CoAu

2
(CN)

4
but the connection to quartz had not been

recognized.
A variant on the quartz structure is the moganite structure

(Fig. 11), which in its simplest conformation with symmetry
Cmmm also has only three vertices in the repeat unit (two
square and one tetrahedral, so they are of two kinds (3)).
This net also occurs in a cadmium cyanide framework (51)
although the authors referred to it a &&new honeycomb net.''
Part of the di$culty in recognition is that the expanded
moganite structure appears with di!erent symmetries in
di!erent contexts: I2/a in SiO

2
and Ibam in BeH

2
. Notice

that the quartz net does not contain 4-rings (the apparent
4-rings in Fig. 11 are 8-rings seen in projection). The vertex
symbol is 6 ) 6 ) 6

2
) 6

2
) 8

7
) 8

7
. The moganite net (which has

two di!erent kinds of vertex) does have 4-rings.
Three other simple structures are listed in Table 2. The

structure named for SrAl2 is found in a number of di!erent
contexts that illustrate the range of materials that can have
a given simple topology. Thus it is the 4-connected net of the
nearest neighbors of a-Np (52). It is the Al

2
or MgSi frame-

work of compounds with the SrAl
2

and SrMgSi structures
(53) (the latter is claimed to be the largest ternary structure



FIG. 11. Top: The two enantiomers of the quartz net projected on
(1121 0). Numbers are elevations in multiples of Da#bD/4. Bottom left: the
moganite net projected on (010), numbers are now elevations in multiples
of b/4. Notice the alternating bands of `Q (unshaded) and ~Q (shaded).
Bottom right: a simpler conformation of the moganite net with symmetry
Cmmm and three vertices in the repeat unit.

FIG. 12. Top: the CrB
4

net; 4-rings (squares) are shaded. Bottom: The
SrAl

2
net: zigzag rods (&&double zigzags'') of edge-sharing squares are

shaded.
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type). It is the AlSi framework of compounds such as RbAl-
SiO

4
and LiAlSiO

4
)H

2
O (the latter is known as zeolite

Li}A and has zeolite code ABW (54)). Structures with inter-
penetrating SrAl

2
nets have also been described (55) in

frameworks of Ag ions linked by long-chain aliphatic dinit-
riles [NC}(CH

2
)
10
}CN].

The SrAl
2
topology has also been found for the linkage of

tetrahedral MnS
4

and supertetrahedral Ge
4
S
10

units in
a form of the MnGe

4
S2~
10

framework (56). Interestingly (as
mentioned above) the same composition with a diamond
topology had been previously synthesized (9); this empha-
sizes that the composition of the building units is insu$cient
to determine the topology achieved (this is, of course, a com-
monplace observation for aluminosilicates). Indeed an im-
portant part of the designer's task, and one which we do not
address here, is the recognition of appropriate templates
(57).

The CrB4 net is the structure of the boron framework in
that compound. It is also the net of all the atoms in b-BeO
and related ternary materials (35). Examples of framework
oxides in which it occurs in an expanded form are a form of
CaAl
2
Si

2
O

8
and metavariscite AlPO

4
) 2H

2
O (see (3)). A

supertetrahedral sul"de with the same topology is also
known (8). The CrB

4
and SrAl

2
nets are illustrated in

Fig. 12.
The CdSO4 net is the second example (the "rst was dia-

mond) of a 4-connected net with the minimum number (2) of
vertices in the repeat unit; it is illustrated in Fig. 13 in its
most symmetrical conformation (symmetry P4

2
/mmc). For

examples of the occurrence of it, and related nets, see
references (58, 59).

As discussed below there is interest in nets with both
tetrahedral and square planar vertices. Clearly there must
be at least two di!erent types of vertex, but if these occur in
equal numbers it is possible for there to be just one kind of
edge. The only net of this kind of which we are aware is that
named for PtS (cooperite) in which Pt forms PtS

4
rectangles

and S forms SPt
4

tetrahedra (Fig. 14). It is not possible to
have simultaneously perfect squares and regular tetrahedra
(but such groups can be linked into a network as described
below). Data for this net are also given in Table 1. Examples
of nanoporous extended solids with structures based on this
topology are given in Refs. (60, 61). We list another example
here: the augmented PtS net is the simplest way to connect



FIG. 13. The CdSO
4

net.
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tetrahedra and squares (Fig. 14). An elegant example (62) of
its occurrence is in CuPt(CN)

4
)NMe

4
in which CuN

4
tet-

rahedra are linked to PtC
4
squares by N}C bonds, although

we could equally describe the net as expanded PtS with Pt
on Pt sites and Cu on S sites and }C}N} linkers expanding
the original net.

Interpenetrating diamond nets. Two interpenetrating
(intergrown) diamond nets occur very commonly. One of
FIG. 14. Left: the PtS (cooperite) net (S, "lled circle
the "rst &&Zintl'' phases prepared was NaTl in which the Na
and Tl atoms each form a diamond net displaced relative to
each other by 1/2,1/2,1/2. If the two nets are composed of
identical atoms, the arrangement in bcc and each vertex has
eight nearest neighbors and the arrangement of vertices
alone has symmetry Im31 m (i.e., bcc)*see Fig. 15. But if just
the four bonds of the original nets are maintained, the
symmetry is Pn31 m. The D minimal surface (29) separates
the two diamond nets and also has this symmetry. In cu-
prous oxide, again with the same symmetry, Cu atoms link
tetrahedrally coordinated O atoms (i.e., the structure con-
sists of corner-connected OCu

4
tetrahedra) into two inter-

penetrating (anti-) cristobalite structures. In the Zn(CN)
2

structure disordered linear }C}N} links join the tetrahed-
rally coordinated metal atoms, again forming two inter-
penetrating networks (63).

Notice that the two interpenetrating diamond nets com-
bined have only two vertices in the repeat unit (the positions
2a of Pn31 m, viz. 0,0,0 and 1/2,1/2,1/2) just like the single net
(cf. the discussion of the ThSi

2
net above). For some of the

very many examples of multiply intergrown diamond nets
see ref. (33).

4-Connected nets and polyhedral tilings. The vertex sym-
bol of the sodalite nets has no subscripts, indicating that
each angle contains just one ring. This is because the struc-
ture is made up of a packing of simple polyhedra (polyhedra
with three edges meeting at each vertex) (Fig. 10).

Structures made up of packings of simple polyhedra such
that two polyhedra meet at each face, three meet at each
edge, and four meet at each vertex are of importance in
several contexts, other than as the frameworks of crystal
structures, such as in foams of bubbles or as the grain
s; Pt, shaded circles). Right: the augmented PtS net.



FIG. 15. Two interpenetrating diamond nets. The larger (Fd31 m) cell is
for the case of two di!erent nets (e.g., NaTl). The smaller (Pn31 m) cell is for
the case of two identical nets. The smaller cell (now Im31 m) is the unit cell
for just the vertices.

FIG. 16. The diamond net as a tiling of space. Left: one tile, an
adamantane unit. Center: two tiles. Right a fragment of the net constructed
from four tiles.

FIG. 17. The four polyhedra without 3- or 4-sided faces that can
combine to tile space. The numbers are the numbers of faces.
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structure in a polycrystalline material. Most of the low
density zeolite structures such as that of faujasite (zeolite
code FAU (54)) are based on tilings of 3-D space by simple
polyhedra. The polyhedra correspond to the cavities in the
structure and their faces correspond to the pores connecting
the cavities.

The sodalite structure is the only 4-connected net derived
from a packing of simple polyhedra in which all the vertices
and all the polyhedra are the same. In the context of foams it
is known as the Kelvin structure, as Lord Kelvin conjec-
tured that it was the lowest energy (minimum surface area)
of a foam of equal bubbles. A number of other 4-connected
nets derived from packings of identical polyhedra have been
described (if one allows nonconvex polyhedra, there is an
in"nite number of these), but they generally have a number
of di!erent kinds of vertex and appear (so far anyway) to be
of less importance in crystal chemistry. However, the enu-
meration of tilings of space by polyhedra turns out to be
a very powerful method of enumerating crystalline frame-
works especially when the algorithm proceeds by enumerat-
ing all uninodal, binodal, etc., structures (64). Thus it is
known that there are just nine uninodal 4-connected nets
derived from packings of simple polyhedra. Six of these
correspond to known zeolite structures. The method is
readily applied (65, 66) to tilings by polyhedra with vertices
at which only two edges meet (see, for example, the diamond
tile in Fig. 16 and also Refs. (3, 47)).

A set of structures of special interest is derived from tilings
of space by simple polyhedra without 3- or 4-sided faces so
that the corresponding nets have rings that are 5- or larger
rings (47) (Fig. 16). It turns out that (at least as far as is
known) only four polyhedra are possible and these can only
combine in special ratios, so that as far as the relative
numbers of polyhedra are concerned all structures can be
considered as derived as intergrowths of three basic ones.
The polyhedra (Fig. 17) have 12 pentagonal faces and either
0, 2, 3, or 4 hexagonal faces. The basic structures formed by
packings of these polyhedra are those of the three common
gas hydrate networks known as types I, II, and III (3, 47).
The type I and II structures occur in clathrasils (framework
silicas) with zeolite codes (54) MEP and MTN. Recently
&&expanded'' forms of silicon, germanium, and tin with par-
tial or complete "lling of the polyhedra with atoms of metal
such as Na have attracted considerable interest, recent pa-
pers (67, 68) give additional references. It is believed that
there is more carbon in oceanic methane hydrate (with the
type I structure) than in all known oil deposits (69).

(3,4)-Connected nets. In (3,4)-connected nets special in-
terest attaches to those nets with all 4-connected vertices (A)
attached to 3-connected vertices (B) and vice versa (for nets
with links joining pairs of 3-connected or 4-connected
vertices, see Wells (23)). The composition is then A

3
B
4
;

Si
3
N

4
provides a familiar example. We know of only four

nets with all the links equivalent; two of them are rather
important in crystal chemistry, but not very well known
(Table 3).

The "rst is known as the boracite net (3) and is shown in
Fig. 18. One way to consider this structure is as derived
from the sphalerite structure AB by removing a quarter of



TABLE 3
Some Simple (3,4)-Connected Nets

Name s.g 4-vertex 3-vertex

Boracite P41 3m d41 m2 (D
2d

) e 3m (C
3v

)
Twisted boracite Fm31 m d mmm (D

2h
) f 3m (C

3v
)

Pt
3
O

4
Pm31 n c41 m2 (D

2d
) e 32 (D

3
)

I41 3d a 41 (S
4
) c 3 (C

3
)

Note. s.g. is space group. Under &&vertex'' are listed Wycko! position and
site symmetry.

FIG. 19. Left: the ReO
3

arrangement of corner-sharing octahedra
(J lattice complex). Right: The net of B in CaB

6
(The Ca atoms center the

large cavities).
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the A (or B) atoms. Note that one can have either 1203
angles at the 3-connected vertex or 109.53 angles at the
4-connected vertex, but not both simultaneously. The sym-
metry is primitive cubic, space group P41 3m and there are
three 4-connected and four 3-connected vertices in the unit
cell. The expanded framework in boracite, which is made up
of linked BO

3
triangles and BO

4
tetrahedra, has

stoichiometry B
7
O

12
. The pattern of 4-connected vertices is

the same as in the ReO
3

(J) structure (Fig. 19) with the
vertices in "xed (invariant) positions in the unit cell. Batten
et al. (15) describe a structure with large cavities that is
based on two intergrown boracite nets.

A variation on the boracite net, which is of lesser import-
ance, but still known in crystal chemistry is what we call the
&&twisted'' boracite net in which there is planar coordination
at the 4-connected vertex (Fig. 18). This is derived by rotat-
ing alternate unit cells of the boracite structure by 903 along
one of the cube directions (a 41 axis). The cubic unit cell edge
is doubled and the symmetry is now Fm31 m.

Augmenting the boracite net produces a linkage of tri-
angles and tetrahedra (Fig. 20), and augmenting the twisted
boracite net produces another linkage of squares and tet-
rahedra (Fig. 21). We have found several examples of these
nets in our recent work (to be published). Although not
so described, the Cu salt of trimesic acid (1,3,5-benzene
tricarboxylic acid) (70) is based on the augmented twisted
boracite net. Again an obvious variation is to decorate
(augment) just either one of the two kinds of vertex.

The Pt3O4 net (3, 22) is the simplest 3,4-connected net in
the sense that it is the only one in which both sets of vertices
are in invariant positions. The 4-connected vertices are in
FIG. 18. Left: the boracite net. Right: the &&twisted'' boracite net.
square coordination and the 3-connected vertices are in
equilateral triangular coordination (Fig. 22). The aug-
mented net is the linkage of triangles and squares to form
a very elegant and open 3-connected (Fig. 23).
FIG. 20. The augmented boracite net.



FIG. 21. The augmented twisted boracite net.

FIG. 23. The augmented Pt
3
O

4
net.
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We also list a fourth net (71), which appears to be of lesser
importance, but is again rather simple with the 4-connected
vertices in "xed positions and all edges equivalent. The
3-connected vertices are in positions x,x,x, etc.; when
x"9/32 they form a regular tetrahedron around the 4-
connected vertices. The angles at the 3-connected vertices
FIG. 22. The Pt
3
O

4
net. (Filled circles are Pt).
are then 119.63. It does not appear to be possible for a 3,4-
connected net to have simultaneously both regular tetra-
hedral coordination, with angles of 109.53, and planar tri-
angular coordination with angles of 1203. (The actual
structures of materials such as Si

3
N

4
are a compromise

between these two conditions.)

5-, 6-, and 8-Connected nets. It is easy to show that there
cannot be a 5-connected net with all edges equivalent (it
would require the presence of 5-fold symmetry axes which
are not possible in two- or three-dimensional periodic struc-
tures). The CaB6 net (Fig. 19) is very common in may
contexts. In compounds such as Ga(CN)

3
(63), C and N

atoms replace the B atoms and Ga centers the octahedra*
there is disorder of the CN groups which may be CN or NC
along any given bond. Structures based on octahedrally
coordinated metal atoms joined by }C}N} links are generi-
cally referred to as &&Prussian blue.''As shown in Fig. 19, The
CaB

6
structure may be considered as derived from a simple

cubic structure of corner-connected octahedra (often named
for the anion positions in ReO

3
and also known as the

invariant lattice complex J). Alternatively it could be con-
sidered as the augmented primitive cubic (P) net. Clearly
a large variety of other 5-connected nets can be derived
similarly from other structures consisting of corner-connec-
ted octahedra (3). Another common boride structure with
5-connected B atoms forming a uninodal net is that of UB

12
(3) which is made up similarly of linked B

12
cuboctahedra.

We may consider this structure to be an augmentation of
the 12-coordinated face-centered cubic structure (symbol



TABLE 4
Some Simple 5-, 6-, and 8-Connected Nets

Name Connectivity s.g Positions Symmetry AB

CaB
6

5 Pm31 m 6 e 4mm (C
4v

)
BN 5 P6/mmm 2 c 61 m2 (D

3h
) P6

3
/mmc, c@"2c

bct 5 I4/mmm 4 c 41 m2 (D
2d

) I4mm
P 6 Pm31 m 1 a m31 m (O

h
) Fm31 m, a@"2 a

¹ 6 Fd31 m 16 c 31 m (D
3d

) (53)
I 8 Im31 m 2 a m31 m (O

h
) Pm31 m

J 8 Pm31 m 3 c 4/mmm (D
4h

)

Note. s.g. is space group. AB refers to the symmetry of the ordered binary
derivative structure.

FIG. 25. The ¹ structure shown as corner-connected tetrahedra.

FIG. 24. Two simple 5-connected nets. Left: BN net, Right: the bct net
(square pyramidal coordination).
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F). Expansion of the CaB
6

structure leads to a network of
corner-sharing AX

5
square pyramids with stoichiometry

A
2
X

5
. In Nb

2
F
5

two such networks interpenetrate (3, 72).
Two 5-connected nets that contain only even rings (and

can therefore be realized as alternating AB structures) are
shown in Fig. 24. They contain the minimum number of
vertices in the repeat unit (2). In the "rst there is trigonal
bipyramidal coordination; hexagonal BN approximates this
arrangement as an ordered AB variant; Li

4
SeO

5
(73) has

a structure that is in turn an ordered variant of the BN
structure. The second net has square-pyramidal coordina-
tion. The arrangement of vertices is the same as in two
interpenetrating ThSi

2
nets (Fig. 4). In Table 4 we refer to

this net as bct (for the symmetry which is body-centered
tetragonal).

Of course a prismatic stacking of planar 3-connected nets
will generate 5-connected nets. The BN net with the stack-
ing of graphite (63) layers is the simplest of these; other
uninodal possibilities are stackings of 4.82, 4.6.12, and 3.122
nets.

There are two 6-connected nets of special importance.
The simple cubic net (name P for primitive cubic) is the
basic structure underlying all three-dimensional periodic
structures (the combination of the six translations $a,
$b, $c generate a lattice). In what should be entirely
familiar, two intergrown P nets produce bcc (symbol I) and
four intergrown P nets produce fcc (symbol F). In each of
these structures (they are of course the cubic lattices) there is
just one point in the primitive cell. Only if atoms fall on the
points of one of these three lattices can they have octahedral
(m31 m"O

h
) symmetry.

The second 6-coordinated net can be considered a net-
work of corner connected tetrahedra (Fig. 25). It occurs in
many places in crystal chemistry. The vertices are in special
positions of Fd31 m and correspond to the invariant lattice
complex ¹. The centers of the tetrahedra form a diamond
network and, taken with the tetrahedron vertices, form the
cubic conformation of the cristobalite (expanded diamond)
network. The ¹ arrangement also occurs as the position of
the octahedral cations in spinel, and the ordering of two
kinds of cation on these sites in so-called &&inverse'' spinels
(such as magnetite) is a famous problem. For the two
simplest solutions see Ref. (69). Notice that as it contains
odd (3-) rings one cannot have alternating A and B, with
A having only B neighbors and vice versa.

For completeness we include the two simplest 8-connec-
ted structures. One is of course the body-centered cubic
lattice (symbol I). The ordered AB version is the CsCl or
b-brass (CuZn) structure. The other well-known structure is
the invariant lattice complex with symbol J, more com-
monly named for the anion array in ReO

3
. It is illustrated in

Fig. 19. In an arrangement of two intergrown J structures,
each vertex has four nearest neighbors of the other net, and
the pattern is in fact that of NbO. This is in fact an appropri-
ate description of the NbO structure as there is surely strong
Nb}Nb bonding. Augmentation of the body-centered cubic
structure leads to a network of linked cubes, the polycubane
structure (74) (zeolite code ACO (54)).



FIG. 26. The augmented rutile net.
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Intergrowth of ¹ and D nets: ¹he Cu
2
O and MgCu

2
structures. As mentioned above in Cu2O there are two
interpenetrating OCu

4
tetrahedral frameworks of the cris-

tobalite type. In each framework the Cu atoms are on
a ¹ net, and the two ¹ nets combined form fcc (F). The two
diamond (D) O nets combine to form a bcc (I lattice) and if
the bonds were ignored, Cu

2
O could be considered as an

interpenetration of the F and I lattices (to produce a primi-
tive cubic structure!) (75).

Another basic intergrowth of the D and ¹ structures
produces the MgCu2 structure (with Mg on the D net and Cu
on the ¹ net). This is of course the famous cubic Friauf
phase (3) that is the most common binary structure known
in chemistry (47).3

It should be clear that decorating the 6-connected primi-
tive cubic lattice will produce a cubic structure of linked
octahedra. This is just the CaB

6
framework already des-

cribed (Fig. 19).

(3,6)- (4,6)-, and (4,8)-Connected nets. Little systematic
study has been made of higher-coordination structures with
mixed connectivity. Here we brie#y mention our candidates
for those most likely to be of importance in the design and
synthesis of low density structures. We identify structures
with high symmetry. In this regard we should mention the
work of Brown (76) who has analyzed the possibility of
occurrence of symmetrical structures with stoichiometries
AB, AB

2
, and A

2
B
3
.

It appears to be impossible to have equiangular triangu-
lar coordination combined with regular octahedral coord-
ination; certainly it is impossible if octahedral symmetry is
required at the 6-coordinated site. Perhaps the best compro-
mise is achieved by the net of the familiar structure of the
rutile form of ¹iO2. It is probably the easiest target for
a designed synthesis, despite the fact that there are two
kinds of Ti}O bond. Indeed interpenetrating rutile struc-
tures have already been reported (77) in compounds
M(tcm)

2
[M"3d transition metal, tcm~"tricyanometh-

ide, C(CN)~
3
]. Augmentation of the rutile net, resulting in

a linkage of triangles and octahedra is shown in Fig. 26.
Likewise it appears impossible to have regular tetrahed-

ral and regular octahedral coordination in a (4,6)-connected
structure; certainly not with tetrahedral and octahedral
symmetry at the two sites. The best compromise appears to
be the structure of the corundum form of Al2O3 (a-alumina).
The expanded structure derived from this with corner-
sharing octahedra and tetrahedra is the rhombohedral
Fe

2
(SO

4
)
3

structure (3). The same framework is found in the
large group of compounds with the nasicon structure; typi-
cal compositions are Na

4
Zr

2
Si

3
O

12
and Na

3
Sc

2
P
3
O

12
. The

structure has also been known in open framework cyanides
3Although, astonishingly, it is absent from most textbooks of inorganic
chemistry!
(referred to as &&zeolitic cyanides'') for more than 20 years.
Examples of compositions are K

2
Fe

2
Zn

3
(CN)

12
) 5H

2
O,

Na
2
Fe

2
Zn

3
(CN)

12
) 9H

2
O, and Cs

2
Fe

2
Zn

3
(CN)

12
) 6H

2
O

(78); in these compounds octahedrally coordinated Fe and
tetrahedrally-coordinated Zn are joined by }C}N} links.

The augmented corundum net is of particular interest as
a linkage of tetrahedra and octahedra (Fig. 27). Notice that
in the cyanides just described, FeC

6
octahedra and ZnN

4
tetrahedra are linked by C}N bonds.
FIG. 27. The augmented corundum net.



TABLE 5
The Basic Nets with One or Two Kinds of Vertex Figure

Coordination Coordination "gures Net

3 Triangle Triangle >* (SrSi
2
)

3 T T ThSi
2

3,3 Triangle T 12
4
) 12

7
) 12

7
3,4 Triangle Square Pt

3
O

4
3,4 Triangle Tetrahedron Boracite
3,6 Triangle Octahedron Rutile (TiO

2
)

4 Square Square NbO
4 Tetrahedron Tetrahedron Diamond (C)
4,4 Square Tetrahedron Cooperite (PtS)
4,6 Tetrahedron Octahedron Corundum (Al

2
O

3
)

4,6 Square Octahedron See text
4,8 Tetrahedron Cube Fluorite (CaF

2
)

6 Octahedron Octahedron Primitive cubic
8 Cube Cube Body-centered cubic

FIG. 28. A 4,6-connected net with square and octahedral coordination.
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A second 4}6 connected net, this time with planar
(square) 4-coordination is also of interest (Fig. 28). An
elegant example of its occurrence is in the Co

3
[Re

6
Se

8
(CN)

6
]
2

framework with Co at the 4-connected sites,
Re

6
Se

8
clusters decorating the 6-connected sites, and

}C}N} groups providing expanding links (79).
There is one (and only one) (4,8)-connected structure with

regular tetrahedral and cubic coordination. This is the
#uorite structure, and it is not surprising that it is nature's
preferred structure for nonmetallic compounds of stoichio-
metry AB

2
.

Decoration of the #uorite net will produce a linkage of
tetrahedra and cubes. If only the 8-coordinated vertices are
decorated, the result is a network of cubes linked by isolated
tetrahedra. This is the framework of the common oc-
tadecasil structure (zeolite code AST (54)). For a discussion
of how ¹X

2
structures based on this topology can adapt to

di!erent ¹}X}¹ angles, and for a discussion of how cubes
can be linked together, see Ref. (74).

CONCLUSION

In this article we have described the simplest topologies of
low-connectivity nets. There are of course, much more com-
plicated topologies known. The most complicated zeolite
described to date has 16 di!erent kinds of tetrahedral vertex
(54). Perhaps in trying to produce a simple 4-connected net
with large structure building units, one might stumble upon
a structure of this complexity by chance; but we believe the
day is still long away when we will be able to design a syn-
thesis to produce a previously speci"ed structure of such
complexity. Although we should mention in this connection
that Iwamoto and co-workers (80}82) in particular have
made an astonishing variety of what they term &&mineralo-
mimetic'' structures largely based on Cd(CN)

2
. Some of

these are indeed &&zeolite-like,'' at least in their structural
aspects.

Indeed we repeat our main contention: most structures
that can readily be designed and synthesized will have very
simple basic topologies dictated by the shape (triangle,
square, tetrahedron, etc.) and connectivity of the structure-
building units. For convenience, Table 5 lists one basic
structure for each kind of unit shape, or combination of two
shapes. Targeting just these topologies should keep the
synthetic chemist busy for some time to come.

A complete primer on designed synthesis will also dwell
on topics such as ensuring that three-dimensional, rather
than layer, structures are formed (assuming that is desired)
and the prevention of interpenetration of open frameworks
(again, assuming that is desired). In such considerations, the
structure-directing role of guests and counterions is of para-
mount importance and careful attention will have to be
placed on guest}host interactions. These will depend
strongly on the speci"c chemistry, as opposed to the simple
geometry which has been our concern in this paper.
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