Porous Germanates: Synthesis, Structure, and Inclusion Properties of GeO$_{14.4}$F$_2$[(CH$_3$)$_2$NH$_2$]$_3$(H$_2$O)$_{0.86}$

Hailian Li, M. Eddaoudi, D. A. Richardson, and O. M. Yaghi*

The Department of Chemistry and Biochemistry, Goldwater Center for Science and Engineering Arizona State University, Tempe, Arizona 85287-1604

Received April 23, 1998

Despite the extensive growth in the syntheses and applications of new crystalline silicate-based porous materials and related molecular sieves,1 the analogous germanate chemistry remains virtually undeveloped with only few open-frameworks reported.2 Given that the minimum M-O-M angles in germanates are typically smaller (120–135°) than in porous silicates (140–145°), the former offers greater opportunities for the formation of three-membered rings and cluster aggregates, which are essential to achieving far more open frameworks having a structural diversity yet unobserved in silicates and their substituted derivatives.3 Anticipating the rich chemistry promised by germanates, we have embarked on a program designed to further this area. We report here on the transformation of germanium dioxide into GeO$_{14.4}$F$_2$[(CH$_3$)$_2$NH$_2$]$_3$(H$_2$O)$_{0.86}$ (ASU-12) using largely nonaqueous soft chemical means.4 Its structure is constructed from Ge$_7$ cluster units linked into a 3D porous net having intersecting channels where (CH$_3$)$_2$NH$_2^+$ (DMA$^+$) and H$_2$O guests reside. We have demonstrated that DMA$^+$ can be reversibly exchanged for Na$^+$ with full retention of the integrity and periodicity of the germanate open framework structure.

Germanium dioxide (0.120 g, 1.15 mmol) was suspended in a pyridine solution (3.20 mL) containing dimethylamine (DMA) (1.40 mL of a 40% aqueous stock solution, 11.16 mmol) and hydrofluoric acid (0.06 mL of an aqueous stock solution of 48.0 wt %, 1.715 mmol) to form a thick liquid/gel. This was heated to 165 °C for 4 days then cooled to room temperature to give colorless crystals of ASU-12 in 65% yield (based on GeO$_2$). Single-crystal X-ray diffraction analysis5 revealed a 3D network with full retention of the integrity and periodicity of the germanate framework having nearly square pore apertures that range in free diameter between 4.5 and 5.0 Å (1.40 Å was used as the van der Waals radius of oxygen) as shown in Figure 2. The pores extend along the crystallographic a and c axes, and at 45° to the a and b axes resulting in a 3D intersecting channel system that is occupied by three DMA$^+$ guests and a partial water molecule per formula unit, the latter having an occupancy of 0.86.

Bond distances and angles within the germanate framework are unexceptional with Ge–O–Ge = 119.0(3)–133.0(4) Å, Ge–O (tetrahedral Ge) = 1.717(6)–1.771(6) Å, and Ge–O (octahedral and trigonal-bipyramidal) = 1.776(6)–2.187(5) Å, which are in agreement with those observed for other germanates.2 Close examination of the guests reveal that the cations (N1–N4) and water guests (O16) are weakly hydrogen-bonded to oxygen and fluorne in the framework (N1–O6 = 2.833(10) Å, N2–F1 = 2.766(8) Å, N4–F2 = 2.756(13) Å, O16–O5 = 2.956(15) Å). A thermal gravimetric study performed on a sample of this material showed an onset of weight loss starting at 165 °C and continuing slowly until 590 °C with a major loss of 6.5% recorded at 320 °C, which we believe is due to the partial decomposition of DMA$^+$ and the evolution of water from the channels. It was not possible to affect the full thermal decomposition of the DMA$^+$.

(5) Anal. Calcd for GeO$_{14.4}$F$_2$[(CH$_3$)$_2$NH$_2$]$_3$(H$_2$O)$_{0.86}$; C, 7.73; H, 2.78; N, 4.51; Ge, 54.51; F, 4.08. Found: C, 7.62; H, 2.77; N, 4.64; Ge, 53.11; F, 3.68.

Figure 1. (a) The building block unit including the asymmetric unit present in crystalline GeO$_{14.4}$F$_2$[(CH$_3$)$_2$NH$_2$]$_3$(H$_2$O)$_{0.86}$ with atoms represented by thermal ellipsoids drawn to encompass 50% of their electron density. Atoms labeled with an additional letter “A” are symmetry equivalent to those atoms without such designation.

Bond distances and angles within the germanate framework are unexceptional with Ge–O–Ge = 119.0(3)–133.0(4) Å, Ge–O (tetrahedral Ge) = 1.717(6)–1.771(6) Å, and Ge–O (octahedral and trigonal-bipyramidal) = 1.776(6)–2.187(5) Å, which are in agreement with those observed for other germanates.2 Close examination of the guests reveal that the cations (N1–N4) and water guests (O16) are weakly hydrogen-bonded to oxygen and fluorne in the framework (N1–O6 = 2.833(10) Å, N2–F1 = 2.766(8) Å, N4–F2 = 2.756(13) Å, O16–O5 = 2.956(15) Å).

A thermal gravimetric study performed on a sample of this material showed an onset of weight loss starting at 165 °C and continuing slowly until 590 °C with a major loss of 6.5% recorded at 320 °C, which we believe is due to the partial decomposition of DMA$^+$ and the evolution of water from the channels. It was not possible to affect the full thermal decomposition of the DMA$^+$.

(6) Colorless prismatic single crystals of GeO$_{14.4}$F$_2$[(CH$_3$)$_2$NH$_2$]$_3$(H$_2$O)$_{0.86}$ were analyzed at $-113 \pm 1^\circ C$, monoclinic, space group Pn (no. 8) with $a = 3.9639(2)$ Å, $b = 29.6646(6)$ Å, $c = 8.8507(1)$ Å, $\beta = 108.3400(10)^\circ$, $V = 2334.987(7)$ Å3, and $Z = 4$ formula units ($\text{d}_{\text{calc}} = 2.392$ g cm$^{-3}$; μ(Mo Kα) = 77.04 cm$^{-1}$). A full hemisphere of diffracted intensities was measured using graphite-monochromated Mo Kα radiation on a Siemens/Bruker SMART CCD System. Cell constants and an orientation matrix, obtained from least-squares refinement using the measured positions of 4450 reflections with $I > 10\sigma(I)$ in the range $3.00 > 2\theta > 50.00^\circ$. The Siemens/Bruker program SHELXLT-PC software package was utilized to solve the structure using “Direct Methods” techniques. All stages of weighted full-matrix least-squares refinement were conducted using F^2 data with the SHELXLT-PC Version 5 software package and converged to give R_1 (unweighted, based on F^2) = 0.024 for 2447 independent absorption-corrected reflections having $2(\text{Mo Kα}) < 52.1^\circ$ and $I > 3\sigma(I)$ and wR_2 (weighted, based on F^2) = 0.029 with a “goodness of fit indicator” value of 1.09.
DMA

original starting material (Figure 3a), having DMA

throughout with water, ethanol, and acetone followed by air-
solution for 45 min; the sample then filtered out and washed
+channels, and the recovered Na

elemental microanalysis. This confirms the absence of C and

of water or the sorption of five water molecules per formula unit,
plateau region of the isotherm corresponds to 10% weight gain

exchanged product was formulated as Ge7 O 14.5 F 2

spectra (compare insets of Figure 3a,b). The identity of the

P

absorption peak associated with DMA

product was confirmed by the disappearance of the strong

in the exchanged

which confirms the proposed hydrated composition of the Na+

exchanged phase.

Upon immersing the Na+ containing product (100 mg) in an
aqueous solution of 5 M DMACl (10 mL) for 45 min, the DMA+ peak in the FTIR reappears (inset of Figure 3c), while the XRPD pattern of this reexchanged solid (Figure 3c) appears identical to that of the original as-synthesized material (Figure 3a). Elemental microanalysis showed 67% of the Na+

+Na 3 (H 2 O) 5 by
dications such as K+, Rb+, Cs+, Ba2+, Ag+, Cd2+, Pb2+, and Tl+. Further studies on the ion-conduction behavior of this material are in progress.

Acknowledgment. This work was supported by the National Science Foundation (CHE-9702131). The continuing interest of Professor M. O’Keeffe is gratefully acknowledged.

Supporting Information Available: Crystallographic data for GeO 14.5 F 2[(CH 3) 2 NH] 2 (H 2 O) 0.86 (ASU-12), including crystal structure analysis report, positional parameters, thermal parameters, and interatomic distances and angles (28 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA9813919

Figure 2. The crystal structure of the 3D porous framework of ASU-12 shown along 45° to the crystallographic a axis with Ge (blue), O (green), and F (red). The DMA+ and water guests are omitted for clarity.

Figure 3. The XRPD patterns and FTIR spectra (insets) of the (a) as-synthesized material, Ge 4O 1.5 F 2[(CH 3) 2 NH] 2 (H 2 O) 0.86 (ASU-12), (b) exchanged solid, Ge 4O 1.5 F 2Na 3 (H 2 O) 5, and (c) reexchanged solid, Ge 4O 1.5 F 2[(CH 3) 2 NH] 2 Na 3 (H 2 O) 5, resulting from the reintroduction of DMA+ into the channels.

Evidence supporting the porosity of this material was obtained by examining the water sorption isotherm of GeO 14.5 F 2Na 3 (H 2 O) 5 using an electromicrogravimetric balance (CAHN 1000). Here, this solid was dehydrated at 96 °C for 16 h under a vacuum of 1 × 10−7 atm until no weight change was observed. Water was then introduced at room temperature in the

P/ P0 range of 0.0−0.6 (P0 = saturation pressure of 0.027 atm) to show a type I isotherm, which is typical of a microporous material. Using these data, the apparent surface area was estimated at 250 m2/g. The plateau region of the isotherm corresponds to 10% weight gain of water or the sorption of five water molecules per formula unit,

(7) Anal. Calcd for Ge 4O 14.5 F 2Na 3 (H 2 O) 5: C, 0.00; H, 1.08; N, 0.00; Na, 7.36. Found: C, 0.21; H, 1.07; N, 0.22; Na, 6.90.

(8) Anal. Calcd for Ge 4O 14.5 F 2[(CH 3) 2 NH] 2 Na 3 (H 2 O) 5: C, 5.17; H, 2.17; N, 3.01; Na, 2.47. Found: C, 5.17; H, 2.10; N, 2.99; Na, 2.37.