
research papers

350 doi:10.1107/S0108767306022707 Acta Cryst. (2006). A62, 350–355

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 22 May 2006

Accepted 13 June 2006

# 2006 International Union of Crystallography

Printed in Great Britain – all rights reserved

Three-periodic nets and tilings: edge-transitive
binodal structures

Olaf Delgado-Friedrichs,a Michael O’Keeffea* and Omar M. Yaghib

aDepartment of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA, and
bDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.

Correspondence e-mail: mokeeffe@asu.edu

28 three-periodic nets with two kinds of vertex and one kind of edge are

identified. Some of their crystallographic properties and their natural tilings are

described. Restrictions on site symmetry and coordination number of such nets

are discussed and examples of their occurrence in crystal structures are given.

1. Introduction

In the design of crystals in which symmetrical building units

are linked together in periodic arrays (reticular chemistry,

Yaghi et al., 2003), it is particularly valuable to have an

inventory of structures of high symmetry as these are most

likely to be produced in practice unless other low-symmetry

structures are specifically targeted (Ockwig et al., 2005).

Structures in which all the links between modules are the same

are particularly important, and these will be based on nets

with one kind of edge (edge-transitive). In two earlier papers

in this series (Delgado Friedrichs, O’Keeffe & Yaghi, 2003a,b),

we identified and described 20 three-periodic nets with one

kind of vertex and one kind of edge (i.e. vertex- and edge-

transitive). We restricted ourselves to nets that had full

symmetry embeddings in which the distances between

unconnected vertices were not less than edge lengths, as

without that restriction there are infinite families of edge- and

vertex-transitive three-periodic nets with high coordination

number (Delgado-Friedrichs et al., 2005). 13 of those 20 nets

can be colored so that black vertices are linked only to white

vertices and vice versa with just one kind of link (Delgado

Friedrichs, O’Keeffe & Yaghi, 2003b). Here we describe some

additional nets with one kind of link, but with vertices of two

different kinds (different coordination figures). We restrict

ourselves to nets that have full symmetry embeddings in which

the distances between unconnected unlike vertices are not less

than edge lengths but, even with that restriction, we do not

claim completeness as the nets are found empirically. We do

believe, however, that most of the more symmetrical such nets

have been included.

We refer to the earlier papers for definitions; here we just

note that we describe a net in terms of its natural tiling, which

is one which preserves the full symmetry of the net and in

which the tiles are as small as possible provided the faces are

all strong rings.1 Strong rings are those which are not the sum

of smaller rings.

2. Symmetry and stoichiometry

We consider a structure with vertices A and B with coordi-

nation numbers a and b; the stoichiometry is AbBa. The order

of the point symmetry at a site in a crystal is equal to the

multiplicity of the general position of the space group divided

by the multiplicity of that site. It follows at once that, in a

particular embedding, the order of the point symmetry at B is

a/b times that at A. For a given coordination figure (tetra-

hedron say), there is a maximum point symmetry with order o

(o = 24 for a tetrahedron) and n vertices (n = 4 for a tetra-

hedron). If a structure AbBa is to be assembled with the

maximum symmetry at both vertices, a necessary condition is

that oA/nA = oB/nB.

In Table 1, we list o/n for a number of symmetrical shapes

that can occur in structures of cubic or hexagonal symmetry.

Note that the symmetry of a regular triangle, considered as a

three-dimensional object, is �66m2 (order 12) – not possible in a

cubic structure; in a cubic structure, the maximum symmetry is

a subgroup of order 6 (3m or 32). Likewise, for an icosahe-

dron, the maximum symmetry in a cubic crystal is m�33 (order

24). The possible combinations with maximal symmetry can be

seen from Table 1 to be: cube/tetrahedron (realized in flu),

Table 1
Maximum order (o) of symmetry divided by number of vertices (n) for
some geometrical figures compatible with cubic or hexagonal symmetry.

Cubic symmetry o/n Hexagonal symmetry o/n

Cuboctahedron 4 Hexagonal prism 2
Icosahedron (10) 2 Trigonal prism 2
Truncated tetrahedron 2 Hexagon 4
Cube 6 Triangle 4
Octahedron 8
Tetrahedron 6
Square 4
Triangle (4) 2

1 This definition leads to a unique natural tiling in the simple high-symmetry
nets considered here and earlier. For some lower-symmetry structures, the
definition of natural tiling needs to be extended to avoid ambiguities. We will
address this topic in a subsequent publication. We note that for one net, thp,
we (Delgado Friedrichs, O’Keeffe & Yaghi, 2003b) missed a ring in the
structure and the natural tiling is 2[3243]+3[43] and the dual [68]. We thank
V. Blatov and D. M. Proserpio for bringing this to our attention.



cuboctahedron/square (ftw), hexagonal prism/trigonal prism

(alb) and hexagon/triangle (kgd, a layer structure).

Other combinations are only possible with lowered

symmetry; for example, to have a (4,6)-coordinated net based

on tetrahedral and octahedral coordination, the order of the

symmetry at the 6-coordinated octahedral site can be at most

2 � 6 = 12, and that at the tetrahedral site 2 � 4 = 8. This is

realized only in the net toc. Nature responds to the problem by

having a variety of structures for compounds A2B3 with

octahedral and tetrahedral coordination. In addition to those

described here, the net (cor) of the corundum (Al2O3) struc-

ture is commonly found (O’Keeffe et al., 2000). Similar

remarks apply to structures AB2 with A in octahedral coor-

dination where the net (rtl) of rutile (TiO2) is frequently found
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Table 2
Edge transitive nets with two vertices.

ps refers to point symmetry of order o0. sg refers to space group and trans to transitivity of the tiling.

Z Vertex figure Symbol ps o0 sg x, y, z Tiles trans

3,4 Triangle pto 32 6 Pm�33n 1/4, 1/4, 1/4 3[84]+[86] 2122
Square �44m2 8 1/4, 0, 1/2

3,4 Triangle tbo 3m 6 Fm�33m 0.3333, x, x 2[64]+[86]+[68.86] 2123
Rectangle mmm 8 1/4, 0, 1/4

3,4 Triangle bor 3m 6 P�443m 0.1667, x, x [64]+[64.86] 2122
Tetrahedron �44m2 8 1/2, 0, 0

3,4 Triangle ctn 3 3 I�443d 0.2802, x, x 2[83]+3[83] 2122
Tetrahedron �44 4 3/8, 0, 1/4

3,6 Triangle pyr 3 3 Pa�33 0.3333, x, x [66]+2[63] 2112
Octahedron �33 6 0, 0, 0

3,6 Triangle spn 3m 6 Fd�33m 0.1667, x, x [46]+[46.124] 2122
Octahedron �33m 12 0, 0, 0

3,8 Triangle the 3m 6 Pm�33m 0.1667, x, x [412]+3[44.82]+[86] 2123
Tetragonal prism 4/mmm 16 1/2, 0, 0

3,12 Triangle ttt 3m 6 F�443m 0.3333, x, x [46]+[64]+[46.64] 2123
Truncated tetrahedron �443m 24 0, 0, 0

4,4 Rectangle pts mmm 8 P42/mmc 0, 1/2, 0 [84]+[42.82] 2132
Tetrahedron �44m2 8 c/a =

p
2 0, 0, 1/4

4,4 Rectangle pth 222 4 P6222 1/2, 0, 0 [4.82]+[83] 2132
Tetrahedron 222 4 c/a = 3/

p
2 0, 0, 1/2

4,6 Square soc 4mm 8 Im�33m 0.2500, 0, 0 [412]+3[44.84] 2122
Octahedron �33m 12 1/4, 1/4, 1/4

4,6 Square she �44m2 8 Im�33m 1/2, 0, 1/4 3[44.82]+[412.86] 2122
Hexagon �33m 12 1/4, 1/4, 1/4

4,6 Rectangle stp mmm 8 P6/mmm 1/2, 0, 1/2 2[43]+[46.122]+[46.122] 2133
Trigonal prism �66m2 12 c/a = 1/

p
6 1/3, 2/3, 0

4,8 Rectangle scu mmm 8 P4/mmm 1/2, 0, 1/2 [44]+[44.82]+[44.82] 2133
Tetragonal prism 4/mmm 16 c/a = 1/

p
2 0, 0, 0

4,12 Rectangle shp mmm 8 P6/mmm 1/2, 0, 1/2 [46]+ 2[43.62]+2[43.62] 2133
Hexagonal prism 6/mmm 24 c/a = 1/

p
2 0, 0, 0

4,12 Square ftw 4/mmm 16 Pm�33m 1/2, 0, 1/2 3[44]+[412] 2112
Cuboctahedron m�33m 48 0, 0, 0

4,6 Tetrahedron toc �44m2 8 Pn�33m 1/4, 1/4, 3/4 2[46.62]+[64] 2122
Octahedron �33m 12 0, 0, 0

4,6 Tetrahedron gar �44 4 Ia�33d 3/8, 0, 1/4 3[42.82]+2[43.83] 2122
Octahedron �33 6 0, 0, 0

4,6 Tetrahedron ibd �44 4 Ia�33d 3/8, 0, 1/4 3[4.62]+[66] 2122
Octahedron 32 6 1/8, 1/8, 1/8

4,6 Tetrahedron iac 222 4 Ia�33d 1/8, 0, 1/4 6[4.62]+2[43]+3[64] 2123
Octahedron �33 6 0, 0, 0

4,6 Tetrahedron ifi 222 4 I4132 5/8, 0, 1/4
Octahedron 32 6 1/8, 1/8, 1/8

4,8 Tetrahedron flu �443m 24 Fm�33m 1/4, 1/4, 1/4 [412] 2111
Cube m�33m 48 0, 0, 0

4,12 Tetrahedron ith �44m2 8 Pm�33n 1/2, 0, 1/4 4[43]+3[46] 2122
Icosahedron m�33 24 0, 0, 0

4,24 Tetrahedron twf �44m2 8 Im�33m 1/2, 0, 1/4 12[43]+3[44]+4[46] 2123
Truncated octahedron m�33m 48 0, 0, 0

6,6 Octahedron nia �33m 12 P63/mmc 0, 0, 0 [43]+[49] 2122
Trigonal prism �66m2 12 c/a =

p
(8/3) 1/3, 2/3, 1/4

6,8 Octahedron ocu �33m 12 Im�33m 1/4, 1/4, 1/4 12[43]+6[44]+[412] 2123
Cube 4/mmm 16 1/2, 0, 0

6,12 Trigonal prism alb �66m2 12 P6/mmm 1/3, 2/3, 1/2 2[43]+3[44]+3[44]+[46] 2134
Hexagonal prism 6/mmm 24 c/a = 2/

p
6 0, 0, 0

6,12 Hexagon mgc �33m 12 Fd�33m 1/2, 1/2, 1/2 6[43]+[46]+2[46] 2123
Truncated tetrahedron �443m 24 1/8, 1/8, 1/8
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Figure 1
The nets of this paper illustrated as the augmented net (left) and as a natural tiling (right). They appear in the same order as in Table 2.
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Figure 1 (continued)



(O’Keeffe et al., 2000; Delgado-Friedrichs, O’Keeffe & Yaghi,

2003c). Both of these last two structures have two kinds of

edge.

3. Descriptions of the structures

Crystallographic and other data for the structures are listed in

Table 2. In accord with our earlier practice (Delgado Frie-

drichs, O’Keeffe & Yaghi, 2003a,b), each structure is assigned

a symbol consisting of lower-case letters.2 Tiles of tilings are

described by face symbols [Mm.Nn . . . ], which indicate that the

tile has m faces that are M-gons, n that are N-gons etc. The

transitivity pqrs indicates that the tiling has p kinds of vertex, q

kinds of edge, r kinds of face and s kinds of tile. Clearly all the

structures in the table have transitivity 21rs. Most of them are

illustrated in two ways in Fig. 1: as natural tilings and as the

augmented nets. In the latter, each vertex is replaced by its

vertex figure; so, for example, the (4,8)-coordinated flu net is

shown as linked cubes and tetrahedra as might appear in a

structure constructed of these building units, The symbol for

the augmented net is flu-a. Three of the 4,6-coordinated nets

(ifi, ibd and iac) are not illustrated as they are hard to

appreciate from figures. For ifi, we have not found a natural

tiling. Net pth is also not illustrated – it is a lower-symmetry

hexagonal variant of pts (see also below).

As there is only one kind of edge, the edge nets, derived by

placing a vertex in the middle of each edge and discarding the

original vertices, are uninodal. They are listed in Table 3.

Many can be realized as sphere packings; in that case, the

Fischer symbol (Fischer, 2004, 2005; Sowa & Koch, 2005) is

also given (notice that the first number of that symbol is the

coordination number). It is interesting that the edge net of ttt

has higher symmetry (Fm�33m) than its parent (F�443m). The nets

are also given a serial number in the table. These follow on

from the numbers of the vertex- and edge-transitive nets

(numbers 1–20).

4. Occurrences and properties

A crystal structure based on the pto (Pt3O4) net interwoven

(rather than interpenetrating and catenated) with another

copy was described by Chen et al. (2001).

Occurrences in crystal structures of nets tbo (twisted

boracite), bor (boracite) and soc (square-octahedron) are

detailed in O’Keeffe et al. (2000).

An occurrence of the net ctn (a hypothetical C3N4 struc-

ture) and a discussion of its properties and propensity for

intergrowth have been given by Dybtsev et al. (2004).

The net pyr (pyrite) has similarly been described by Chae et

al. (2003) who also found the net intergrown.

The spn (spinel) net is the net of the anions and octahedral

cations in spinel, i.e. the Al and O in MgAl2O4 and Pr and I in

PrI2. For other examples of its occurrence, see Baburin et al.

(2005).

The net pts (PtS) may be derived as the edge net of the

minimal net cds (CdSO4). The related net pth is similarly

derived from the qzd net. These nets and their occurrences are

described by Delgado-Friedrichs, O’Keeffe & Yaghi, (2003c).

The net gar (garnet) is derived from the tetrahedral and

octahedral anions of garnet, i.e. Al and Si in Ca3Al2Si3O12 as

vertices and with —O— links acting as edges. An imidazolate

based on this topology was recently described by Park et al.

(2006).

The flu (fluorite) net is the net of the atoms in fluorite

(CaF2) and of course very familiar in crystal chemistry.

The alb (AlB2) net is that net of the Al—B bonds in AlB2 –

the prototype of a very large family of intermetallic

compounds.

The mgc (MgCu2) net is that of the Mg—Cu bonds in

MgCu2 – the prototype of the largest family of intermetallic

compounds.

The nets pyr and ftw have self-dual natural tilings (notice

that the transitivity 2112 is palindromic). These nets are the

labyrinth nets of the minimal balance surfaces C(S) and C(P),

respectively (Fischer & Koch, 1989); i.e. two interpenetrating

nets of each type run along the centers of the labyrinths of

each surface. mgc has a self-dual tiling (not natural),

2[46]+[412], with the same transitivity; this is in fact the tiling

shown in Fig. 1. The larger tile in this tiling is formed by gluing

together a [46] and 6[43] of the natural tiling. mgc is the

labyrinth net of the C(D) minimal balance surface (Fischer &

Koch, 1989). The natural tiling of ctn has two kinds of eight-
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Table 3
The edge nets of the nets described in this paper.

The last column is the Fischer symbol (see text) of the sphere packing with the
same net. Nets are listed in the same order as in Table 2.

Number Symbol Edge net Fischer

21 pto hbo 4/3/c5
22 tbo hal 4/3/c8
23 bor bor-e 5/3/c7
24 ctn ctn-e 5/3/c35
25 pyr pyr-e 5/3/c19
26 spn dia-j 6/3/c14
27 the pcu-i 5/3/c8
28 ttt ubt 5/3/c4
29 pts pts-e 5/3/t2
30 pth wjk 5/3/h2
31 soc bcu-k 6/3/c15
32 she rho 4/4/c4
33 stp ttw 5/3/h5
34 scu fee 5/4/t4
35 shp bnn 5/4/h5
36 ftw reo-e 6/3/c3
37 toc toc-e –
38 gar gar-e –
39 ibd – –
40 iac iac-e –
41 ifi – –
42 flu flu-e 6/3/c4
43 ith ith-e –
44 twf twf-e –
45 nia nia-e 7/3/h20
46 ocu ocu-e –
47 alb tfs 6/3/h20
48 mgc fnf 5/3/c11

2 The symbols can be used to find these structures in a database of periodic
nets at http://okeeffe-ws1.la.asu.edu/RCSR/home.htm.



ring face and may be written 2[83
a]+3[82

a.8b]. If the 8b face

(yellow in Fig. 1) is not used, one gets a self-dual (not natural)

tiling 4[83
a]+3[84

a] with the same symmetry and with transitivity

2112. The net is the labyrinth net of the S minimal balance

surface (Fischer & Koch, 1989). The four nets of this para-

graph are the only ones we know of that have self-dual tilings

with the symmetry of the net and that have transitivity 2112.

Self-dual natural tilings with transitivity 1111 are the tilings of

the nets srs, dia and pcu (Delgado Friedrichs, O’Keeffe &

Yaghi, 2003a), which are the labyrinth nets of the G, D and P

minimal surfaces.
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