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Abstract We call attention to methods of enumerating

periodic structures and to the databases that contain them.

These provide information essential to the systematic

design of crystalline materials. The underlying topology is

uniquely specified and identifiable from the Systre key

which is thus the topological genome.
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The last 20 years have seen a profound shift in the way the

structures of crystalline materials are described. The

change is from crystal structures as sets of points (sphere

packings etc.) to crystal structures as sets of connected

points: graphs. The graph describing the underlying

topology of a crystal structure is usually termed a net which

is a special kind of graph—connected (all vertices linked

by a path of edges) and simple (no edges beginning and

ending on the same vertex, or multiple edges) [1].

Parallel to that change in the way of regarding crystal

structures was the development of reticular chemistry

which is concerned with the designed synthesis of mate-

rials of predetermined structure by linking molecular

modules (secondary building units, SBUs) into periodic

frameworks [2]. However, as a distinguished crystal che-

mist observed some years ago, ‘‘the synthesis of new

structures requires not only chemical skill but also some

knowledge of the principal topological possibilities’’ [3].

This requirement is equally important to the development

of theoretical databases of potentially useful materials. The

topic of analysis of crystal structures in terms of underlying

nets is large and has been reviewed elsewhere [1]. In this

paper, we describe our work, which we believe to be

unique, in which those principal topological possibilities

have been discovered, characterized, and recorded in

searchable databases.

The systematic discovery of new nets has been made

possible by the development of combinatorial tiling theory.

In particular, the generalized Schläfli symbol—the Dela-

ney-Dress symbol (D-symbol)—can be used to determine

all periodic tilings of a space (e.g., three-dimensional

Euclidean space) of a given kind. The 1-skeleton of a

periodic tiling (the set of vertices and edges) is in fact a

periodic net carried by the tiling—just the topological

structure that is sought. In an early application to enu-

meration of potential zeolite structures, the D-symbol was

identified as an example of an ‘‘inorganic gene,’’ a concept

earlier introduced by Mackay [4]. However, as a given

three-dimensional net can have many tilings (or none at all

because of self entanglement), we consider the D-symbol

rather as a seed or embryo and describe here a topological

genome that provides the information that uniquely and

completely specifies a periodic net.

A route to uniquely characterizing a periodic net came

from what is called an equilibrium placement. In that, the

vertices are assigned barycentric coordinates in which each

vertex has coordinates that are the average of those of its

neighbors. It is easy to show that if one vertex is arbitrarily
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assigned coordinates (say 0, 0, 0) and a translation lattice

given, the rest are then uniquely determined [5]. A key

result is that for nets in which no two vertices have the

same barycentric coordinates (nets without collisions), the

automorphism group of the abstract graph is isomorphic

with a crystallographic space group (an automorphism of a

graph is a permutation of vertices that preserves the edge-

vertex connectivity) [5, 6]. Virtually all the nets of prac-

tical interest in materials crystal chemistry are such crys-

tallographic nets. For them a unique identifier (the Systre

key) can be determined so that it can be definitely stated

whether or not two nets are the same [7]. Thus for this class

of structures, the notorious graph isomorphism problem is

solved.

The Systre key is the net genome. It contains all topo-

logical information about the net such as automorphism

group and topological invariants like point symbols, cycle

structure, and coordination sequences. Importantly, it is

also unique for a given net.

We illustrate these points by considering the structure of

an inorganic material, faujasite, also known as zeolite X

and zeolite Y, which is one of the most valuable inorganic

materials due to the central role it plays in the petro-

chemical industry. The structure is an aluminosilicate

framework with tetrahedral atoms (Al and Si) linked into a

4-coordinated net by –O– links. The framework structure is

actually a special type known as a simple tiling by simple

polyhedra. A simple polyhedron is one with only 3-coor-

dinated vertices. In a simple tiling, two such polyhedra

meet at a face (the tiling is face-to-face), three at an edge,

and four at a vertex. The D-symbol tells us how these

polyhedra are arranged in a tiling. Such simple tilings are

ubiquitous in nature, for example as foams, biological

structures, and the grain pattern of polycrystalline

materials.

But we can go deeper. Each tiling has a dual structure in

which the vertices of the dual are inside the original tiles

and linked by new edges to new vertices inside adjacent

tiles. Noting that the dual of a dual is the original tiling

completes the specification. The dual of a simple tiling is a

tiling by tetrahedra.

An important mathematical result is that there are

exactly nine combinatorial types of tiling by one tetrahe-

dron (i.e., nine isohedral tilings by tetrahedra) [8]. It fol-

lows at once that there are just nine uninodal (one kind of

vertex) simple tilings. Interestingly, seven of these are

known zeolite structures including that of faujasite. The

other two contain 3-rings which are unfavorable for alu-

minosilicate zeolite structures.

In practice, in deriving a D-symbol, a tile is divided into

tetrahedral chambers whose vertices are one each of the

vertices of the tile and the centers of edges, of faces, and of

the tile itself. Figure 1 shows how the tetrahedron of the

faujasite dual structure is divided into 24 chambers. A D-

symbol is then a labeled graph which contains a node for

each kind (w.r.t. to symmetry) of chamber, colored edges

describing where chambers share faces with each other,

and finally numbers indicating how many of these cham-

bers meet around a given common edge [9]. The latter

determine such properties of the tiling as the sizes of its

two-dimensional faces, the degrees of vertices within

individual tiles, and so on. Hence the name generalized

Schläfli symbol.

The figure also shows a textual representation of the

D-symbol which completely specifies the combinatorial

structure of the tiling and its dual, and hence implicitly the

net of the faujasite structure. D-symbols can be read by the

program 3dt (available at gavrog.org) which, among many

other things, can export the net topology.

The faujasite structure as drawn by 3dt is shown in

Fig. 2 as a tiling of space by polyhedra—hexagonal prisms,

truncated octahedra, and larger polyhedra (faujasite cages).

But also shown in the figure is a second description of the

structure—a tiling by polygons of a two-dimensional

periodic surface. In this description, to which we return

below, the structure is a 43.6 tiling of a surface known as

the D surface.

Figure 3 shows the Systre key for the faujasite net. This

is in fact what is known as a labeled quotient graph [10].

The first number indicates that the structure is 3-periodic.

Thereafter, each set of five numbers defines an edge of the

repeat unit. Thus, the last five say that the vertex 44 is

joined to vertex 48 in the unit cell displaced by 0, 0, 1 from

the origin. An essential point is that there are an impossibly

large number of different labelings of the quotient graph

for a typical net. Thus for the faujasite net, there are 48

vertices in the repeat unit, and thus 48! & 1061 vertex

numberings, and for these in principle an infinite number of

choices of coordinate bases. However, by use of the

equilibrium placement, combined with graph traversing

techniques, Systre is able to reduce these numbers dra-

matically. The key observation here is that, once a coor-

dinate system is fixed, the neighbors of any given vertex

can be sorted lexicographically by their assigned coordi-

nate values, which in the absence of collisions allows one

to construct a unique numbering inductively. For a graph

with E edges in the repeat unit, at most E3 different

coordinate systems and hence numberings have to be

considered. In practice, the actual number is usually much

smaller, e.g., 1152 (vs. 963 & 106) in the case of faujasite.

Of all the potential representations based on these num-

bering, the lexicographically smallest is chosen as the

canonical key [11]. Systre is available as part of the Gavrog

package (gavrog.org).

We turn now to enumeration of nets. Tilings, and hence

the nets they carry, can be systematically enumerated, and
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this has been done, for example, for simple tilings and

quasi-simple tilings (duals of tilings by generalized tetra-

hedra). These all provide 4-coordinated nets of special

interest to the design and synthesis of materials like zeo-

lites and zeolitic imidazolate frameworks (ZIFs) [12, 13].

Of particular interest was the enumeration of tilings with

one kind of face (face transitive)—the duals of these have

nets with one kind of edge (edge transitive) [14]. Such nets

are by far the most important for design and synthesis of

materials such as metal–organic frameworks (MOFs)

[2, 15].

But there is another way of generating nets from tilings

which is, perhaps, even more powerful. We remarked

above that the faujasite net could be considered as a 43.6

tiling of a periodic surface. But note that a tiling of the

plane by quadrangles is 44. A tiling formed replacing a

quadrangle by a hexagon requires excess area compared

with the flat plane. In fact, the 43.6 pattern tiles the

hyperbolic plane (a surface of negative curvature). One

representation of this tiling is shown in Fig. 4.

The geometry and topology of the faujasite structure can

be constructed in three-dimensional space by mapping that

hyperbolic tiling onto a sponge-like Euclidean crystalline

surface of negative curvature [16]. Such surfaces are well

Fig. 1 Left a space-filling

tetrahedron whose tiling is the

dual of the faujasite tiling. Black

balls are at the tetrahedron

vertices. Green, red, and blue

balls are at the centers of,

respectively, edges, faces, and

the tile. Top right one is the

tetrahedra chamber of the tile.

Below that is the D-symbol

which specifies how the

chambers are assembled in the

tiling (Color figure online)

Fig. 2 Faujasite structure. Left

as a tiling of Euclidean space by

three-dimensional tiles (yellow,

green, and blue). Right as a two-

dimensional tiling of a periodic

surface by quadrangles (yellow)

and hexagons (green) (Color

figure online)

Fig. 3 Systre key for the net of the faujasite structure
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known in materials physics and chemistry, particularly the

three cubic surfaces known as P, D, and G (gyroid). Both

the D and G surfaces, for example, are formed in the

bicontinuous cubic phases of liquid crystals [17], and the G

structure underlies the structure of the MCM-48 meso-

porous silicate material [18]. Two-dimensional tilings of

the hyperbolic plane—that are readily enumerable—can be

used to construct three-dimensional nets systematically

[19, 20]. The EPINET project (‘‘Euclidean Patterns

Induced by Non-Euclidean Tilings’’ [21]) systematically

generates crystallographic nets in this way. The variety of

nets that can be produced is incredibly rich. An initial

enumeration derived from the most symmetric hyperbolic

tilings of limited complexity has already produced some

14,000 3-periodic nets; many more are in the pipeline.

A second database, much smaller (about 2600 nets), is

the RCSR (Reticular Chemistry Structure Resource), a

collection of the nets, known so far, likely to be of special

interest to the design and syntheses of materials [22]. The

criteria for inclusion include topological simplicity (small

numbers of kinds of vertices and edges) and/or special

interest in the theory of periodic nets and tilings. Many of

the RCSR nets also occur in EPINET (indeed often come

from there). Although primarily a database of periodic

graphs, they are given as optimal embeddings with space

group, unit cell, and coordinates for vertices and edges.

The entry for faujasite is shown as Fig. 5. Each RCSR net

has a symbol (lower case bold letters) such as fau for the

faujasite net and dia for the net of the diamond structure.

Note that fau is also identified as sqc13159, its EPINET

identifier.

There are also other specialized databases of nets suit-

able for silicate zeolites [23, 24]. These are restricted to

nets with embeddings in which every vertex is in tetrahe-

dral coordination. The program package ToposPro has a

large database of nets including all RCSR and EPINET

nets [25]. This can be searched for occurrences of nets in

reported crystal structures. This program can also be used

to generate tilings for nets in a form suitable as inputs for

3dt.

We have presented D-symbols and labeled quotient

graphs (in the form of Systre keys) as examples of Alan

Mackay’s general concept of an inorganic gene [26] (see

also [27–30])—a mechanism that allows us to encode a

spatial structure in the form of a lineal or one-dimensional

sequence such that we can translate back and forth between

the structure and its encoding, similarly to how a biological

gene encodes a protein in the form of a piece of DNA

strand and conversely, at least in principle, the gene could

be recovered from the protein. In contrast to Mackay’s

original proposal, which uses bond lengths, angles, and

torsion for the encoding [26], both the D-symbols proposed

later [4] and the labeled quotient graphs we focus on here

are purely topological and do not contain any explicit

measurements.

It is customary and convenient to use invariants such as

vertex symbols and coordination sequences for structure

recognition, but as these do not contain the complete

information necessary for reconstructing a structure, they

can never provide positive proof that two candidate struc-

tures are indeed identical. By contrast, a topological gene

contains all the information necessary, but unlike its bio-

logical counterpart, the same abstract gene can have a large

number of concrete, one-dimensional representations. As

we have demonstrated above, however, this difficulty can

be overcome and we can efficiently compute a ‘‘canonical’’

genetic sequence, the Systre key, which uniquely and

completely describes a crystallographic net and hence

combines many of the advantages of traditional invariants

and an inorganic gene.

The Systre key is a unique textual representation of a net

such that two nets are the same if and only if their keys are

identical. Once this representation is computed, a simple

text comparison is all that is needed to identify a given net.

Besides the Systre software itself, this property has been

used in the EPINET project to remove duplicates from the

enumeration, as well as in ToposPro, where the Systre key

serves as a final tie-breaker when identifying nets. But we

believe that there is even greater potential. Well-estab-

lished hashing techniques can be used to condense the

Systre key—which can be quite large for complicated

nets—into a fixed-sized ‘‘fingerprint,’’ e.g., a 40 character

sequence of letters and digits using the popular SHA1

algorithm [31]. Such a fingerprint can then be used for

Fig. 4 Hyperbolic tiling 43.6 shown on a Poincaré disk, from

EPINET (http://epinet.anu.edu.au/hqc576)
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example in URLs, and we envision a ‘‘meta-search engine’’

for structures in which a net can be entered and searched

for in a variety of participating structure databases via the

Systre key and its fingerprint. We further hope that

Mackay’s work as well as our own contributions may

inspire future research into ‘‘genes’’ and canonical repre-

sentations in chemistry and material science.
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