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ABSTRACT: Covalent organic frameworks (COFs) have emerged as
promising atmospheric water harvesters, offering a potential solution to the
pressing global issue of water scarcity, which threatens millions of lives
worldwide. This study presents a series of 2D COFs, including HCOF-3,
HCOF-2, and a newly developed structure named COF-309, designed for
optimized water harvesting performance with a high working capacity at low
relative humidity. To elucidate their water sorption behavior, we introduce a
hydrophilicity index directly linked to intrinsic properties, such as the
strength and spatial density of adsorptive sites. This index is mathematically
correlated to the step of water adsorption isotherms. Our correlation
provides a predictive tool that extends to other microporous COFs and
metal−organic frameworks, significantly enhancing the ability to predict their onset positions of water adsorption isotherms based on
structural characteristics. This advancement holds the potential to guide the development of more efficient materials for atmospheric
water harvesting.

■ INTRODUCTION
Metal−organic frameworks (MOFs) and covalent organic
frameworks (COFs) have emerged as promising materials for
water harvesting from air, providing the potential to alleviate
the global water crisis.1−13 A practical water harvesting material
must exhibit at least two important water uptake properties.
First, a steep water uptake behavior so that minimal variation
in pressure or temperature would be required to collect the
harvested water.7,14 Second, an onset of water uptake�a
position corresponding to approximately 50% of water
sorption capacity�at a relative humidity (RH) matching the
prevailing humidity level in the region of interest.15 While high
crystallinity directly governs the steepness of water uptake,
predicting the relative humidity at which the onset occurs is
heretofore underdeveloped. Herein, we use COFs, which
exhibit a highly tunable structure, high crystallinity, chemical
stability, and versatile functionalization, as exemplars for how
to determine a priori the onset of water harvesting from a given
porous framework structure. Specifically, we find, contrary to
the prevailing understanding, that the density of adsorptive
sites (the number of adsorptive sites per unit area or volume)
is a vital component in determining the onset position. We
derive a mathematical relationship between the onset and the
density of adsorptive sites as well as their strength, serving as a
predictive descriptor of the water onset position in new
microporous COFs and MOFs. Consistent with our newly
developed equation, we report a novel water-harvesting COF

that demonstrates an exceptional water uptake capacity and a
low onset position.

■ RESULTS AND DISCUSSION
COF Synthesis, Characterization, and Their Water

Sorption. Among the COFs investigated for water harvesting,
2D honeycomb (hcb) COFs with hydrazine linkages, such as
AB-COF and COF-480-hydrazide,6,7 exhibit promising water
sorption behavior. However, their imine-bonded structures are
prone to hydrolysis. In our efforts to make COFs that take up
water at low relative humidity, combined with good water
sorption stability upon cycling, we investigated three
isoreticular hcb frameworks: the previously reported HCOF-
3,16 HCOF-2,16 and a new COF which we named COF-309
(Figure 1).
HCOF-3 and HCOF-2 were synthesized using modified

literature procedures.16 COF-309 was prepared by mixing
solids of 2,4-dihydroxy-1,3,5-triformylbenzene (TFB-2OH)
and 2,5-diaminopyridine (DAPy) in a solution of dioxane,
1,2,4-trichlorobenzene, and aqueous 6 M acetic acid. While
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these solvents were chosen to ensure optimal solubility and
reaction conditions in our proof-of-concept study, we think
that exploring greener alternatives (ethanol, water, or other
environmentally benign media) is crucial for scaling up. We
obtained COF-309 in 96% yield within 3 h by using a
microwave-assisted synthesis at 140 °C [Supporting Informa-
tion (SI) Note 1]. This method indicates a potential for future
scalability of COF-309 production.17,18 The three COFs were
characterized by Fourier-transform infrared spectroscopy (FT-
IR), cross-polarization magic angle spinning 13C nuclear
magnetic resonance (13C CP-MAS NMR), elemental analysis
(EA), scanning electron microscopy (SEM), thermal gravi-
metric analysis (TGA), powder X-ray diffraction (PXRD),
transmission electron microscopy (TEM), structural optimi-
zation using density functional theory (DFT), N2 sorption, and
H2O sorption (SI Notes 1−3, Table S1, and Figures S1−S27).
In evaluating the water uptake behavior of these COFs, we

made an unexpected observation. The ratios of hydrazine
(which contains 2 adjacent imine functional groups) and β-
ketoenamine moieties in HCOF-3 and HCOF-2 are 2:1 and
1:2, respectively. These ratios can only be verified using single-
crystal X-ray analysis. Unfortunately, HCOF-2 and HCOF-3
did not crystallize as single crystals, so these ratios remain
theoretical. Based on a higher number of more hydrophilic β-
ketoenamines in HCOF-2, we anticipated its water onset
position to shift to a lower relative humidity than that of

HCOF-3. However, the water onset position in HCOF-2 was
observed to shift to 32% RH from 23% RH in HCOF-3
(Figure 2).
To gain insight into the chemical reasons for this unexpected

behavior, we performed DFT calculations with periodic
boundary conditions on the COF unit cell (SI Note 3 and
Note 4). We computed the strength of the binding of water to
each functional group in the COFs and identified the number
of potential adsorptive sites in each pore. The functional
groups, ranked by their water binding strength (DFT
calculations with the SCAN-D3BJ functional) from highest
to lowest, are carbonyl (ΔECarbonyl−w = −16 kcal mol−1) greater
than imine (ΔEImine−w = −10 kcal mol−1) greater than hydroxyl
(ΔEHydroxyl−w = −6 kcal mol−1). To assess their nucleation
ability, we compared these calculated water binding energies to
those of two water molecules placed at the center of the COF
pore, not interacting with the framework (ΔEw−w = −9.4 kcal
mol−1). We propose that functional groups should yield a
water binding energy higher than ΔEw−w to be considered as
adsorptive sites. These calculations suggested HCOF-3 to have
6 adsorptive sites (2 carbonyl and 4 imine) but HCOF-2 to
have only 4 adsorptive sites (2 carbonyl and 2 imine) in each
pore fragment (Figure 3). The lower number of adsorptive
sites found in HCOF-2 is due to the tautomerization of half of
the β-ketoenamine functional groups, as computed using DFT
(SI Note 3). The degrees of tautomerism in HCOF-3 and

Figure 1. Space filling models and chemical structures corresponding to the single pore fragments of the isoreticular COFs in this study. (a, b)
HCOF-3 {[(TFB-OH)2(Hy)3]hydrazine,β‑ketoenamine; TFB-OH = 2-hydroxy-1,3,5-triformylbenzene, Hy = hydrazine} and HCOF-2 {[(TFB-
2OH)2(Hy)3]hydrazine,β‑ketoenamine; TFB-2OH = 2,4-dihydroxy-1,3,5-triformylbenzene} each comprised of hydrazine and β-ketoenamine linkages.
(c) COF-309 {[(TFB-2OH)2(DAPy)3]imine,β‑ketoenamine; DAPy = 2,5-diaminopyridine} composed of imine and β-ketoenamine linkages. Space filling
model color code: C, gray; O, red; N, blue; H, light gray.
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HCOF-2 are 100% and 50%, respectively, based on DFT
simulations. The hydroxyl groups were not found to be
potential adsorptive sites because their water binding was
weakened by hydrogen bond interactions with adjacent imine
groups (SI Note 4 and Figures S28−S32). This results in the
fact that the hydroxyl groups in HCOF-2 do not adsorb water
molecules. The lower number of adsorptive sites in HCOF-2
thus leads to its shift to a higher water onset position.
Given these findings, we hypothesized that increasing the

number of adsorptive sites with water binding energies larger
than ΔEw−w will shift the onset position of the water
adsorption isotherm to a lower relative humidity. Therefore,
we designed COF-309, which features 9 adsorptive sites in
each pore fragment (4 carbonyl, 2 imine, and 3 pyridine;
ΔEPyridine−w = −10 kcal mol−1; Figure 3).

COF-309 exhibited a Brunauer−Emmett−Teller surface
area of 1698 m2 g−1 with a pore size distribution at 15.3 Å
(Figures S20 and S21) and exceptional water stability (Figures
S21 and S22). Its water isotherm, measured at 25 °C, showed a
steep step with the onset position at 20% RH and a total water
uptake capacity of 0.74 gwater gCOF

−1 (Figure 2). Additionally,
water isotherms measured at 35 and 45 °C showed a negligible
loss of the total water uptake capacity (Figure S23). The
isosteric heat of adsorption ( Hads) of COF-309 was
calculated using the Clausius−Clapeyron equation which
gave an average value of 48.1 kJ mol−1 (11.47 kcal mol−1,
Figure S24). Gibbs ensemble Monte Carlo simulations further
corroborated the water sorption behavior observed in these
COFs (SI Note 4 and Figures S26 and S27).
We performed cycling experiments to evaluate the long-term

utilization of COF-309 under simulated application conditions.
The water isobaric desorption of COF-309 was measured at a
water vapor pressure of 1.70 kPa (corresponding to 40% RH at
30 °C) to probe the suitable regeneration temperature (Figure
S33), allowing us to determine its desorption temperature of
60 °C. The adsorption−desorption experiments were then
conducted under isobaric conditions with a temperature swing
between 30 and 60 °C to trigger the release of 0.52 gwater
gCOF

−1 (Figure S34). This value is the highest water working
capacity among reported water harvesting COFs. It also
surpasses that of established water harvesting MOFs such as
CAU-10,19 MIL-160,20 Al-fumarate,21 MOF-303,22 MOF-LA2-
1(furan),23 and MOF-LA2-2(furan)23 and is comparable to
MOF-LA2-1(pyrazole).24 More importantly, the water work-
ing capacity of COF-309 remained almost unchanged after at
least 170 water adsorption−desorption cycles (Figure S34). It
should be noted that, while COF-309 and HCOF-2 are stable
under water adsorption−desorption experiments, HCOF-3 is
unstable under similar conditions (Figure S7).

Hydrophilicity Index. The water adsorption isotherms of
the COFs studied in this work prompted a detailed
examination of the framework properties governing the onset
position in water harvesting COFs and MOFs. Particularly, a
smaller shift in the onset position was observed between COF-
309 (9 adsorptive sites, RHonset = 20%) and HCOF-3 (6
adsorptive sites, RHonset = 23%) in contrast to that between

Figure 2. H2O sorption measurements of HCOF-2, HCOF-3, and
COF-309 at room temperature with onset positions at 32% RH, 23%
RH, and 20% RH, respectively. COF-309 exhibits a total water uptake
capacity of 0.74 gwater gCOF

−1.

Figure 3. Computed water adsorptive sites in HCOF-3, HCOF-2, and COF-309 exhibiting 6, 4, and 9 water adsorptive sites in each pore fragment,
respectively. Color code: C, gray; O, red; N, blue; H, light gray.
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HCOF-3 and HCOF-2 (4 adsorptive sites, RHonset = 32%)
despite a larger difference in the number of adsorptive sites
between COF-309 and HCOF-3.
Generally, water adsorption in COFs and MOFs occurs in

two stages: the first “seeding” stage, characterized by
adsorption of primary water molecules onto the framework
adsorptive sites, followed by the “pore-filling” stage where
secondary water molecules form intermolecular hydrogen-
bonded networks with the primary water molecules.1,2,10,14,19

We hypothesized that a high density of adsorptive sites within
sufficient proximity would favor hydrogen bonding of the
secondary water molecules, facilitating the formation of
continuous networks between isolated water clusters formed
at the adsorptive sites.
We sought to establish a correlation between the onset

position of the water adsorption isotherms of microporous
COFs and MOFs and the strength and spatial density of their
adsorptive sites. We defined the “hydrophilicity index” (iH; a
numerical value that represents a material’s ability to interact
with water, considering factors such as the number of
adsorptive sites and the strength of their interactions with
water) for each framework (eq 1)

i
N
S

H
RT

expH
ads

A

ads=
i
k
jjjj

y
{
zzzz

(1)

where Nads is the number of adsorptive sites per one unit cell
(details of Nads calculations are provided in SI Note 5); Hads
is the average isosteric heat of water adsorption (kJ mol−1),
experimentally determined using the Clausius−Clapeyron
relationship, which relates to the strength of the adsorptive
sites; R is the ideal gas constant (J mol−1 K−1); T is the
temperature at which the isotherm is measured (K); SA is the
theoretical surface area per unit cell (m2) calculated using N2
probe radius (1.82 Å)�theoretical surface area is chosen to
minimize deviations in calculations caused by low crystallinity
(i.e., low experimental surface area). The hydrophilicity index
can be standardized (i.e., made unitless) by multiplying by a
factor of 1 × m2.
For several microporous water harvesting COFs4,6,7,10,25 and

MOFs,14,20,22−24,26,27 the iH of the framework can be used to
calculate its onset position of water adsorption (eq 2):

i
N
S

H
RT

RH ( ) expa
a

onset H
ads

A

ads= =
i
k
jjjjj

i
k
jjjj

y
{
zzzz

y
{
zzzzz

(2)

RHonset, defined as p

p
onset

sat

(where ponset is the partial pressure of

water vapor in kPa and psat is the saturated vapor pressure of
water in kPa), represents the onset position of the water
sorption isotherm (%). The onset positions of the water
adsorption isotherms of MOFs and COFs were found to
correlate with their hydrophilicity indices (Figure 4). Detailed
methods for determining the hydrophilicity index and number
of adsorptive sites are described in the SI (Note 5, Figures
S35−S38, and Tables S2 and S3). As an example, we provided
step-by-step calculation of the hydrophilicity index for MOF-
801.1 Additionally, we included an Excel file with calculations
of the hydrophilicity indexes for various MOFs and COFs.
Among water harvesting COFs, COF-309 stands out as a
benchmark structure, exhibiting the lowest onset position at
20% RH. It is noted that we selected framework structures
from the literature based on their high performance in

atmospheric water harvesting, characterized by high water
capacity and low onset of water sorption. Despite their
structural diversity, their hydrophilicity indices correlate well
with the onset of water harvesting. This demonstrates the
broad applicability of our equation in predicting the onset of
water harvesting for various framework structures.
Equation 2 can be rearranged to eq 3 to give insights into

the thermodynamic origins of the proposed correlation. The
nature and number of adsorptive sites effectively govern the
free energy for water adsorption in the pores of the COF/
MOF. The presence of strong adsorptive sites minimizes the
enthalpy of water adsorption, while a higher density of these
sites along the pore wall increases the configurational entropy
of water molecules adsorbed within the framework. The
constant parameter a (unitless) is characteristic of the class of
microporous structure (COF or MOF) that may account for
the long-range interactions of the adsorbed water molecules
with the framework.

RT RT
p

p

a H aRT
N
S

ln(RH ) ln

( ) ln

onset
onset

sat

ads
ads

A

=

=

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjj

y
{
zzzzz (3)

The calculation of iH is not limited to the use of
experimental Hads but can also be approximated using
estimated electronic energies of hydrogen bonds formed
between water molecules and various functional groups
(OLSA theory�Omar−Lac Ha−Saumil−Ali theory, SI Note
6 and Table S5). However, iH can be more accurately
calculated by determining the strength of individual adsorptive
sites from more accurate calorimetric measurements or
computational studies. It should be noted that we do not
intend to use the iH equation to describe the complexity of the
water adsorption and desorption pathways within the pores of
reticular structures. Readers are encouraged to refer to
computational simulations reported in the literature.28,29

Figure 4. Correlation between the onset position of the water
adsorption isotherms of microporous COFs and MOFs to their
hydrophilicity index (iH). As iH increases, the onset position of the
water adsorption isotherms of the COFs/MOFs reduces, shifting to a
lower relative humidity.
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■ CONCLUSION
We report the synthesis, characterization, and water sorption
properties of a series of 2D COFs based on imine and β-
ketoenamine linkages: HCOF-3, HCOF-2, and COF-309.
HCOF-3 and HCOF-2, comprising 6 and 4 adsorptive sites,
respectively, exhibit water onset positions at 23% and 32% RH,
respectively. In contrast, our newly designed COF-309, having
9 adsorptive sites, displays a step-shaped water sorption
isotherm with an onset position at 20% RH. Under isobaric
conditions (pwater = 1.70 kPa) and a temperature swing
between 30 and 60 °C, COF-309 exhibits a water working
capacity of 0.52 gwater gCOF

−1 and it is stable for at least 170
water adsorption−desorption cycles. The outstanding water
sorption behavior of COF-309 can be attributed to the large
pore volume, high spatial density, and strength of the
adsorptive sites, which is supported by computational
simulations. We derived a correlation between the strength
and density of adsorptive sites for microporous reticular
frameworks (COFs and MOFs) that successfully predicts the
onset position of their respective water adsorption isotherms.
Our proposed hydrophilicity index can be used to accelerate
the design of new water harvesting frameworks by allowing a
quick evaluation of their water onset positions. In conclusion,
this work presents a novel, high-performing water harvesting
framework (COF-309) with high water uptake capacity and an
onset position at low relative humidity. Additionally, we
introduce an effective descriptor (hydrophilicity index
equation) for predicting the onset positions in water
adsorption isotherms. Our equation can be applied to a wide
range of microporous framework structures used in atmos-
pheric water harvesting.
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