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ABSTRACT: The design and synthesis of 2D and 3D crystalline covalent organic frameworks (COFs) from macromolecular and
even infinite building units is largely undeveloped. Here, we report a strategy to link molecules and 1D ribbons into 2D cystalline
frameworks. Triangular, tris(4-aminophenyl)amine (TAA), and square, 1,3,6,8-tetrakis(p-formylphenyl)pyrene (TFPPy), organic
building units are joined substoichiometrically by imine linkages to produce 1D ribbons, termed COF-76, bearing free amines, which
are then used to link the ribbons into 2D frameworks COF-77 and COF-78. In addition to this stepwise approach, we also
demonstrate an in situ synthesis of these COFs. We believe our ability to link infinite building blocks, such as the ribbons of COF-76,
into higher dimensionality COFs, paves the way to covalent frameworks composed of hierachical chemical structures.

Reticular chemistry of covalent organic frameworks (COFs)
is concerned with covalently linking discrete molecular

building blocks into extended, crystalline structures.1−5 The
reticular chemistry database features a vast number of
theoretically accessible structures starting from small molecule
organic building units,6,7 but the design and synthesis of
frameworks from large and even infinite building blocks remains
a major challenge.8,9 The main reason lies in the difficulty in
retaining control over solubility and crystallinity during the
synthesis.10−12

Inspired by the precise control with which nature links small
molecules into 1D strands and directs their assembly into more
complex 2D and 3D structures, we envisioned linking13−16 of
molecular building units into covalent organic ribbons and
crystalline frameworks. This requires formation of 1D ribbons
bearing reactive functional groups on their backbone for
reticulating them into 2D frameworks.
The current strategy to introduce reactive functional groups

on the backbone of COFs relies on postsynthetic deprotection
of reactive groups.17−20 Postsynthetic modifications, however,
often come at the cost of a loss in crystallinity and porosity.21,22

Recently, a second protecting group-free strategy has been
introduced, which relies on linking molecular building units
substoichiometrically. As a result, extended frameworks with
periodically uncondensed, “frustrated”, functionalities can be
targeted.23−25

Here, we build on the latter strategy by reacting squares and
triangles in a 1:2 substoichiometric ratio to synthesize 1D
ribbons having unreacted, frustrated amine-functional groups on
the backbone (Figure 1). These amine groups are then used to
link the 1D ribbons by imine and imide chemistry into 2D
COFs. In addition to this stepwise approach, we report an in situ
synthesis of these hierarchically composed crystalline 2D
frameworks starting from three discrete small molecules. Figure
1 illustrates both synthetic routes.
Specifically, we reacted the four-coordinate 1,3,6,8-tetrakis(p-

formylphenyl)pyrene (TFPPy) with the three-coordinate tris(4-

aminophenyl)amine (TAA) to form 1D ribbons {COF-76,
[(TFPPy)(TAA)2]imine}. COF-76 was further reticulated by
using either benzene-1,4-dialdehyde (BDA) to form COF-77
{(TFPPy)(TAA)2(BDA)imine} or pyromellitic dianhydride
(PMDA) to yield COF-78 {(TFPPy)(TAA)2(PMDA)imine,imide}.
COF-76 was synthesized by reacting TFPPy with TAA in a

1:2 stoichiometric ratio under solvothermal conditions with the
addition of trifluoroacetic acid (TFA) in nitrobenzene/
mesitylene (3:1; 3 d at 85 °C). The addition of the modulator12

p-toluidine (20 equiv) was key in obtaining the product in high
crystallinity (see Supporting Information (SI), Section S2).
After successful crystallization, the solid was solvent-exchanged
with chloroform for 12 h and activated under vacuum at 90 °C
for 3 h to ensure complete removal of residual solvent in the
pores. COF-76 was subsequently characterized by Fourier-
transform infrared (FT-IR) and nuclear magnetic resonance
(NMR) spectroscopies as well as thermogravimetric (TGA) and
elemental analysis (EA).
The FT-IR spectrum of COF-76 shows the absence of

residual aldehyde groups (νC=O = 1692 cm−1) present in the
starting material (TFPPy). Additionally, the formation of the
imine functionality was supported by the appearance of the
imine stretch at νC=N = 1628 cm−1 (see SI, Section S3).
Importantly, the FT-IR traces substantiated the presence of free
amine functionalities (νN−H = 3352 cm−1). Further structural
insight was gained by 13C cross-polarization magic angle
spinning (CP-MAS) NMR spectroscopy. The resonance at
162.4 ppm, stemming from the imine-carbon, is indicative of
successful imine formation. Also, the resonance at 146.0 ppm
corresponds to the α-carbon of the amino phenyl group (see SI,
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Figure 1. Synthesis of 1D COF-76, 2D COF-77, and -78 by a stepwise (A and B) and in situ method (C). 1,3,6,8-Tetrakis(p-formylphenyl)pyrene
(TFPPy) and tris(4-aminophenyl)amine (TAA) were reacted in a 1:2 stoichiometric ratio to form COF-76 (A). COF-76 was linked by imine (with
benzene-1,4-dialdehyde, BDA) and imide condensation (with pyromellitic dianhydride, PMDA) to form COF-77 and COF-78, respectively (B).
COF-77 andCOF-78 were formed in one step fromTFPPy and TAAwith BDAor PMDA (C). Atom sphere colors: C, gray; N, blue; O, red. Hydrogen
atoms, except for aldehyde- and amine-hydrogens, omitted for clarity.
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Section S4).26 Again, no residual aldehyde signals were
observed.
Structural elucidation of COF-76 was carried out by powder

X-ray diffraction (PXRD), followed by subsequent analysis of
the pattern (Figure 2, see SI, Sections S1 and S5). The Charge

Flipping27 method was used to calculate the electron density
map (EDM) of COF-76. The structure was then modeled by
localizing the TFPPy fragments based on the EDM analysis. The
TAA fragments were subsequently linked to the TFPPy units
generating the 1D ribbon. The high resolution data, a result of
the high crystallinity, enabled the use of the Rietveld
refinement28 to assign the structural parameters of COF-76
leading to the final unit cell parameters (Ima2, a = 48.2495(3) Å,
b = 22.3132(2) Å, c = 8.1481(6) Å) and converged R factors (Rp
= 8.47%, Rwp = 11.80%; Figure 2 and SI, Section S5).
In this model, the single 1D ribbons are locked into each

other, with the free amine group pointing toward the imine
linkage (H···N = 3 Å, Figure 1). Along the c-axis, the COF-76
strands are stacked onto each other with interlayer distances of
Ccentroid···Ccentroid = 4 Å. COF-76 displays a cylindrical pore with
a diameter of 12 Å (C···C distances using van der Waals radii,
Figure 1).
The N2 isotherm of COF-76measured at 77 K showed a Type

I isotherm, indicating permanent porosity and a Brunauer−
Emmett−Teller (BET) surface area of 860 m2 g−1 (see SI,
Section S6). The pore size distribution, estimated by density
functional theory (DFT) calculation using the cylinder
geometry and N2-cylindrical pores-oxide surface model, was
calculated from its N2 sorption isotherm with a pore diameter of
12 Å, which is in good agreement with the modeled pore size
(Figure 1). The experimental pore volume of COF-76, extracted
from the N2 isotherm, amounts to 0.42 cm3 g−1, which is in good

Figure 2. Overlay of the experimental and calculated PXRD traces
obtained for COF-76. Rietveld refinement was applied to obtain the
converged unit cell parameters.

Figure 3.Overlay of FT-IR spectra of COF-76, COF-77, and COF-78 with vibrational bands of characteristic functional groups (a). Experimental and
simulated PXRD traces of COF-76, COF-77, and COF-78 (b). N2 isotherms of COF-76 (black), COF-77 (red), and COF-78 (blue) at 77 K. Pore size
distributions of COF-76, COF-77, and COF-78 (d).
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agreement with the calculated value obtained from PLATON29

using the Void Calculation function (0.44 cm3 g−1).
To afford the extended 2D COF, we linked COF-76 through

the unreacted amine groups on the backbone. Two types of
linkages were targeted, namely an imine-based and an imide-
based linkage, leading to COF-77 and COF-78, respectively
(Figure 1).
The imine-based linking relies on the condensation of the free

amine groups of the 1D COF-76 with BDA, whereas the imide-
based linking involves reaction of the free amine groups of COF-
76 with PMDA to form the extended 2D COF-78 (Figure 1).
Two synthetic strategies are reported for COF-77 and -78. The
first one follows the stepwise synthesis of the 1D ribbon from the
TFPPy and TAA. After isolation and characterization, the 1D
ribbon is subjected to linking conditions to obtain the extended
2D structure (either imine or imide conditions). The second
strategy follows an in situmethod, where the 1D ribbon and the
2DCOF are formed in one step. Both strategies lead to the same
2D framework products, COF-77 and COF-78, possessing a bex
topology (see SI, Section S5).24

Following the stepwise approach, COF-76 and BDA (1 equiv)
were immersed in 2mL of nitrobenzene/mesitylene (3:1) with 2
v% of TFA. COF-77 was obtained as a crystalline solid after 5 d
at 85 °C. A comparable crystallinity was obtained by in situ
formation of COF-77. The three small molecular linkers
TFPPy, TAA, and BDAwere dissolved in a 1:2:1 stoichio-
metric ratio in nitrobenzene/mesitylene (3:1); p-toluidine (20
equiv) was added as a modulator, and the solution was heated
for 5 d at 85 °C.
These two strategies were also applied for the imide-based

COF-78. We initially followed the stepwise approach, where
COF-76 and PMDA (1 equiv) were immersed in mesitylene/N-
methyl-pyrrolidone/isoquinoline in a 1:0.2:0.02 volumetric
ratio (1.22 mL). The crystalline COF-78 was obtained after 5
d at 160 °C. This method was then compared to the product of
the in situ approach, where TFPPy and TAA (1:2 stoichiometric
ratio) were dissolved in nitrobenzene/mesitylene (3:1) with 2 v
% of TFA and p-toluidine (20 equiv). After 1 d at 85 °C, PMDA
in mesitylene/N-methyl-pyrrolidone/isoquinoline (1:0.2:0.02
volumetric ratio) was added and the suspension was heated for 5
d at 160 °C. Both procedures yielded comparably high
crystallinity, as indicated by similar elemental analysis results,
PXRD, and surface area (see SI, Sections S2, S5, and S6). When
TFPPy, TAA, and PMDA were dissolved under the same
reaction conditions and heated to 85 °C, only the formation of
COF-76 was observed. This further substantiated the formation
of the 1D ribbon prior to reticulation.
COF-77 and COF-78 were solvent-exchanged with chloro-

form for 12 h and subsequently activated under vacuum at 90 °C
for 3 h to ensure complete removal of residual solvent in the
pores.
The successful linking of COF-76 to afford COF-77 and -78

was followed by FT-IR spectroscopy analysis. The disappear-
ance of the free amine band at νN−H = 3352 cm−1 present in
COF-76 was indicative of the successful formation of the imine
linkage in COF-77. For COF-78, the FT-IR traces showed the
formation of new bands, corresponding to the characteristic
imide stretches at νC=O = 1774 cm

−1 and νC=O = 1722 cm
−1. The

FT-IR stretch at νC−N−C = 1375 cm−1 is consistent with the
formation of the C−N−C functionality present in the imide
linkage (Figure 3a).30 The 13C CP-MAS NMR spectroscopic
resonances at 162.9 and 163.6 ppm, stemming from the imine-
carbon, are present in COF-77 and -78, respectively. Addition-

ally, the solid state spectroscopic traces of COF-78 showed a
signal at 164.6 ppm corresponding to the carbonyl-functionality
of the imide linkage (see SI, Section S4).30 No residual signals of
unreacted amine functionalities (α-carbon of the amino phenyl
group) were observed; instead, the resonance assigned to the α-
carbon of the imide shifted from 146.0 ppm for the free amine to
the broadened resonance at 156.7 ppm for COF-77 and 155.6
ppm for COF-78 (see SI, Section S4).
COF-77 and COF-78 were structurally characterized by

PXRD, followed by analysis and comparison of the PXRD traces
with COF-76 (Figure 3b). Two new low-angle intense
diffraction peaks evidenced the formation of an increased unit
cell for COF-77 and -78 (2θ/CuKα = 2.4° and 6.3°; 2.6° and
6.6° respectively; Figure 3b). The structures were assigned to
the bex topology, which is a binodal net constructed from 3-c
and 4-c secondary building units (see SI, Figure S11). This
results in two kinds of pores, the smaller one originating from the
1D ribbon (12 Å) and the larger one from linking the ribbon into
the 2D extended structure (19−20 Å, Figure 1). The structural
models for COF-77 and COF-78 are detailed in the SI, Section
S5.
The N2 sorption isotherm at 77 K confirmed permanent

porosities of COF-77 and -78. Both frameworks display a Type I
isotherm with a BET surface area of 1288 m2 g−1 and 1265 m2

g−1, respectively (see SI, Section S6). This accounts for a
substantial increase in the BET surface area compared to COF-
76 (860 m2 g−1; Figure 3c). The BET surface area of COF-78 as
synthesized by the stepwise approach is slightly smaller than the
one measured after the in situ synthesis (1080 m2 g−1; see SI,
Section S6). The pore size distribution for COF-77 and COF-78
was calculated from their N2 sorption isotherms based on the
same model used for COF-76. The values obtained from this
model are in good agreement with the structural model of COF-
77 and COF-78 (12 and 11 Å, respectively, for the smaller pores;
20 and 19 Å for the larger pores; Figure 3d).
We have reported a new concept of assembling discrete

organic molecules into 1D ribbons, followed by their linking into
2D frameworks. Our approach relies on a protecting-group-free
strategy to produce 1D ribbons bearing reactive functional
amine groups on the backbone. The functional groups are then
employed to reticulate the 1D ribbons by imine and imide
chemistry to obtain the crystalline 2D frameworks COF-77 and
78 in a bex topology.
This work showcases the use of infinite molecular building

blocks for the synthesis of crystalline frameworks. We highlight
this concept through imine and imide chemistry and emphasize
the generalizability and applicability of this strategy to other
linkages.
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