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The Bigger Picture

The full potential of linking

molecular building units with

strong bonds to make extended

chemical structures (reticular

chemistry) can be unlocked by the

development of digital tools of

laboratory robotics and artificial

intelligence. This digitization

leads to faster discoveries that

have an impact on society and the

articulation of previously

unimagined questions. Turning

what is typically an empirical

practice into a data-driven one

promises to transform the current

state of affairs in reticular

chemistry: researchers making
SUMMARY

Reticular chemistry operates in an infinite space of compositions,
structures, properties, and applications. Although great progress
has been made in exploring this space through the development
of metal-organic frameworks and covalent organic frameworks,
there remains a gap between what we foresee as being possible
and what can actually be accomplished with the current tools and
methods. The establishment of digital reticular chemistry, where
digital tools are deployed, in particular laboratory robotics and arti-
ficial intelligence, will fundamentally change the current workflow to
enable discovery of this untapped chemical space and to go beyond
the limits of human capacity. In so doing, long-standing challenges
in reticular chemistry can finally be addressed faster and better,
and more significantly, new questions, unimagined before digitiza-
tion, can be articulated. The interface between human and ‘‘ma-
chine’’ is an integral part of this endeavor and one whose quality is
critical to uncovering science transcending intellectual and physical
borders.
chemical structures and

investigating their possible

properties rather than targeting a

structure for a specific property.

The four pillars of digital reticular

chemistry—a comprehensive

database, computational and

experimental discovery cycles,

and the human-digital interface—

are ideally suited to efficiently

generate, test, and implement

research ideas into impactful

discoveries that improve society

at large.
INTRODUCTION

Reticular chemistry is defined as linking molecular building units by strong bonds

into crystalline extended structures.1 This definition encompasses three features

contributing to the current expansion of the field. First, the building units are well-

defined organic molecules and metal-containing entities whose geometry and rigid-

ity can be used to synthesize extended structures by design. The size of the building

units ensures that the resulting constructions are open frameworks—an approach

that has been used to reticulate a large number of inorganic and organic building

units into extensive classes of porous metal-organic frameworks (MOFs) and cova-

lent organic frameworks (COFs).2–20 Second, linking these building units by ‘‘strong’’

covalent or metal-organic bonds (specifically, charge-assisted metal-to-ligand

bonds, such as metal-carboxylate) has resulted in architecturally and chemically

robust structures amenable to chemical functionalization, without compromising

their overall integrity and utility.21–28 Third, crystallinity is essential to achieving

atomic-level characterization and atomic precision design of these structures.29–32

These three defining characteristics of reticular chemistry have extended metal-

complex and organic chemistries into infinite 2D and 3D porous frameworks within

which the pore environment can be further manipulated and controlled to realize

numerous applications.33–48

Given the vast number of building units and their corresponding frameworks, and

the chemical modifications that can be made to tailor the pores, it is worthwhile to

recognize that reticular chemistry operates in an infinite space of composition, struc-

ture, property, and application. To date, we have only exploited a tiny fraction of this

infinite space and, although we have accessed remarkable properties for MOFs and
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Scheme 1. Tools for Developing Digital Reticular Chemistry
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COFs, the vast potential of reticular chemistry remains untapped. How do we realize

this potential and in doing so how will reticular chemistry be transformed? The cur-

rent methods of reticular chemistry, and for that matter chemistry in general, are

inadequate to the task of fully exploiting the vast reticular space.

There is a disparity between what we think is possible in reticular chemistry and what

we are able to achieve using the current methods and tools. This is likely to continue

and grow, hampering the intellectual and practical advancement of not only our field

but also chemistry as a whole. Our conjecture is that the disparity can be addressed

by adopting and developing digital tools. As shown in Scheme 1, these are labora-

tory robotics and artificial intelligence (AI). These tools will enable high-throughput

experiments involving synthesis and characterization of compounds and program-

ming the robot machinery and interfaces to automate the process. In addition, the

digital tools also include data-mining efforts where robust routines for digitizing

text and collating data will be established, as well as using machine learning to

help in making data-driven decisions (Scheme 1). Such tools will fundamentally

change how we carry out research and how researchers formulate questions.

Although, these digital tools are being rapidly developed by specialists in various

fields,49–53 very little is permeating as routine tools for chemistry researchers to be

able to transform their experimental inquiries. This ‘‘digital gap’’ can be addressed

by using reticular chemistry as an excellent starting point for digitization because of

its vast chemical space that is ripe for exploration. We wish to remark that society has

already created digital tools to routinely and easily conduct affairs in the business

sector, such as commerce, banking, and trade, thereby greatly expanding the crea-

tion of new opportunities and their reach worldwide. We see no insurmountable

problems in deploying digital tools in reticular chemistry and thereby finding new

vistas for exploration.

We propose the establishment of ‘‘digital reticular chemistry,’’ which we define as

being concerned with the use of laboratory robotics and AI (Scheme 1) to develop

intellectual and practical tools for gaining speed and sophistication in the chemistry

and applications of framework structures. As experienced in other fields where digi-

tization is more prevalent,54–56 inevitably there will be two components to digital

reticular chemistry. The first is a human component, where our hope is to encourage

the practice of reticular chemistry beyond the limitation of human capacity and, in so
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doing, provide new opportunities to map this untapped chemical space and make

impactful discoveries. The other is the digital component, where robust, reliable

tools must be developed on the basis of objective data. Most of the work will be

at the interface joining these two components. The exchange at the interface be-

tween humans and computers in producing meaningful discoveries and analysis

will be paramount to the success of digitization of reticular chemistry.

In this contribution, strategies for how to close the digital gap and further develop

reticular chemistry are described. We examine the current operating model of retic-

ular chemistry research and contrast it with what we propose for its digitization. A

discussion is given for how some outstanding fundamental questions in the field

can be answered by this effort, and new questions might be articulated and ad-

dressed. Understanding the interface between researcher and ‘‘machine’’ becomes

critical to the success of this endeavor, and as such the human element of digitization

is also explored.
A VAST RETICULAR CHEMICAL SPACE

Reticular chemistry and the framework structures have flourished over the last two

decades. This resulted in the creation of more than 80,000 MOFs and 500

COFs,1,57–60 whose chemical properties have been studied and explored. Already

with this number of new structures, reticular chemistry spans a large chemical space

where important questions of societal impact are being addressed. By developing

digital tools, we believe that this field will continue to make significant intellectual

and practical contributions. However, we also believe that these digital tools could

be applied to exploring the potential for asking questions yet unimagined. In this

section, we discuss the creation of a more extensive chemical space than we have

today and present a view of the components of reticular structures, which will figure

prominently in studying this space through digitization.
Anatomy and Variations of Frameworks

The ‘‘anatomy’’ of a porous reticular framework is based on the intermingling of mat-

ter (linked atoms) and pore space (voids), each of which is vital to their chemistry.

Matter in reticular frameworks can be dissected into (1) a framework backbone,

where the building units are joined through a strong linkage to make a continuous

network of bonded molecules; (2) functionalities, which include organic units, metal

complexes, or polymers covalently bonded to the backbone; and (3) guests, a range

of molecules, clusters, or even nanoparticles occupying specific or disordered posi-

tions in the pore space and interacting with the framework through intermolecular

forces. Extensive efforts have been dedicated to making variations in the kind of

building units used to construct the framework’s backbone and the functionalities

employed to design the pore environment into which many different kinds of guests

can be introduced. A large majority of variations being made in reticular chemistry

today lead to ‘‘simple’’ structures, where a framework is constructed with fewer va-

riety than potentially possible for each one of the three major components.61–64

Even within this simple structure space, diversity is created by just varying the param-

eters pertaining to composition, size, linkage, and connectivity of the building units

to make frameworks based on different structure types. Furthermore, as we discuss

below, a new level of diversity is achieved by applying variations to one or more of

these components within a single framework (Figure 1).

Here, we present some of the variations that can be achieved in the building units.

The composition can be varied with the majority of metals in the periodic table.
Chem 6, 1–23, September 10, 2020 3



Figure 1. Vast Reticular Structural Space

The diversity of reticular structures is manifested by the multiplicity at each design level and its combinatorial progression across all levels. Rigid

molecules with specific geometries are first identified as the building units for making frameworks of targeted topologies. For a chosen geometry (rod)

of the molecular building unit, its size can be tuned by varying the length of the organic struct without altering its connectivity and shape. The linkage

groups between the connected building units are then specified for completing the construction of the framework backbone, onto which functionalities

of desired chemical identities can be appended. When multiple functionalities of different kind are incorporated into a single framework, their spatial

arrangement constitutes rich chemical sequences extending in 1D to 3D space. Given a functionality sequence, complex and diverse pore environments

that interact differently with guest molecules can be created.
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The sizes of building units have been shown to range from 1 to 16 metal centers for

discrete units15,30–32,65,66 and infinity for rods67,68 and sheets69 in MOFs and from 1

to 11 phenylene units in MOFs and COFs.70 In addition, non-phenyl71 as well as chi-

ral47,72 and naturally available4,18,73 organic linkers have been used. In MOFs, the

linkages have metals bound to carboxylates,30 sulfonates,74,75 phosphonates,75,76

catecholates,77 diamines,38 dithiolates,78 imidazolates,79 pyrazolates,17,80 triazo-

lates,81,82 and tetrazolates,83 whereas in COFs, linkages are boroxines,5 boronate

esters,5 borosilicates,84 aminals,85 imines,86 azines,87 olefins,88–90 hydrazones,91

ureas,92 amides,23 imides,10 phenazines,93 dioxins,94 oxazoles,95 thiazoles,26 imid-

azoles,96 triazines,97 and borazines98 (Figure 1).

The connectivity of building units gives different framework types (topologies)

whose number can be quite large. Just for linking triangles, there are almost a million
4 Chem 6, 1–23, September 10, 2020
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possible topologies that could be reticulated, as well as many more for other shapes

and combinations thereof.62–64 At this point, it is useful to remark that even with the

simple reticular frameworks known to date, they do occupy a front and center place

in solving some of the most vexing energy and water problems facing society.33–48

The extent to which the vast reticular space can have multiplicity and diversity may

be appreciated by contrasting how these attributes are imparted in inorganic solids

and biological macromolecules. A common strategy for making variations on inor-

ganic solid-state compounds is to substitute constituent elements with those

belonging to the same group in the periodic table. One example is substituting sul-

fur with selenium in the hope that the obtained derivatives have the same structure

type and thus exhibit properties relevant to making comparisons. In general, the

chemical space of inorganic solids is largely defined by the combination of possible

constituent elements within significant chemical constraints (e.g., electronega-

tivity99 and size matching100,101) and limited choices of elements obeying those

constraints.

The richness of reticular structures is based on the fact that the metal ion is not the

point of extension because it is embedded in the building unit contributing to its sta-

bility but not its connectivity as such. For example, in MOF-5, far more variations can

be implemented at the carbon atoms making up the corners of the Zn4O(O2C–)6 oc-

tahedron than at zinc atoms in the Zn4O core. Thus, although some diversity can be

created in MOFs by varying the metal ions,102 far more diversity can be achieved by

the organic linkers.43 Clearly, when these two types of variations are working

together, another level of diversity is realized (Figure 1). Conversely, in inorganic

solids, the site of variation is typically the metal, which is based on relatively fewer

options. In addition, inorganic solids often have challenges in adapting large vari-

eties of structure types as a result of the expensive energy penalty associated with

the loss of packing efficiency.103

Multivariate Character and Biological Structures

It is natural to think about what will come beyond the present state of affairs. The

reticular chemical space will expand explosively once we start increasing the number

of different kind of building units and functionalities incorporated into what will

become more appropriately termed ‘‘multivariate’’ structures.104,105 Multivariate is

used when (1) multiple linkers that are topologically equivalent are identical in their

binding groups and metrics but different in their chemical composition,106–108 (2)

multiple topologically equivalent metal ions form the same multi-metallic building

unit,105,109,110 and (3) aperiodic vacancies are present on or in the backbone of a sin-

gle reticular structure.111,112 How to precisely describe the outcome of this increase

in multiplicity, diversity, and complexity and how to study it meaningfully become

central questions with overwhelming possibilities and challenges, ideally suited

for digitization.

Biological molecules such as proteins and DNA are based on very few different kinds

of amino acids and nucleotides, but these are linked into specific spatial arrange-

ments (sequences). Their amino acids or nucleotides are covalently attached to a

regularly repeating amide (proteins) and a polyphosphate-sugar (DNA) backbone.

The principle of sequences that are central to biology can be transferred into retic-

ular structures. For example, this can be done by the covalent attachment of almost

an infinite number of multiple different functionalities onto the backbone of the

framework. Here, the variance exists not only in the spatial arrangement of the func-

tionalities but also in the backbone itself when the number of its constituent building
Chem 6, 1–23, September 10, 2020 5
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units is increased. This scenario of increased variation in functionality and backbone

constituents coupled with their spatial arrangement brings unparalleled diversity to

the reticular chemical space. The variance in such reticular structures is clearly

described by the sequences of constituents, whether they be building units in the

backbone or functionalities bound to that backbone (Figure 1).113 However, instead

of adopting a discrete linear form as in biological molecules, the sequences in retic-

ular structures are infinite 1D, 2D, and 3D according to the dimensionality of the void

space and the framework.114 A recent report involving multivariate MOFs with

mixed-metal rods showed that the metal arrangement along the rods follows unique

sequences.115

A Continuum of Matter and Pore Space

Now, we turn to the pore space that is being created and architecturally maintained

by the backbone and where its environment is diversified by the functionalities. The

shape of pores and what an incoming guest ‘‘experiences’’ electronically and steri-

cally can vary as much as the composition of the whole does. Thus, the same infinite-

ness described for matter applies to the pore space it encompasses. In other words,

an infinite number of possible backbone building units, functionalities, and also

space configurations can be described in terms of sequences (Figure 1).

The vast reticular chemical space can be appreciated by illustrating the infiniteness

of variations achievable in only one framework. The power of our variation capability

is manifested by combinatorial mathematics and the magnitude of the exponential

growth that results from a cubic structure. How many unique chemical environments

may result from a cube where each of its 12 edges has a functionality chosen from

among eight different types? There exist 2,863,870,080116,117 unique pore environ-

ments that can be ‘‘sampled’’ by, for example, a chiral guest molecule, far exceeding

the total number of compounds that have ever been made by humankind. When

these cube units are further joined into an extended cubic framework (Figure 1),

the connection of the pores of varying chemical environments into channels creates

an even more massive environment space belonging to only this one structure type!

Intermolecular forces acting within these chemical environments translate into

equally variable and extensive complexity.

On a fundamental level, this immense composition, structure, and chemical environ-

ment space coupled with our ability to make infinite number of variations on each of

the components leads us to propose that reticular frameworks will no longer occupy

discrete states of matter and pore space. Instead, the vast number of states that can

be created in even one structure means that the characteristics of these structures

will lie on a continuum of states.107 Such states are intrinsic to reticular structures

because the multivariate character can be created on a framework without altering

its integrity. This feature is harder to achieve in inorganic solids, proteins, and

polymers because the outcome of their multivariate modifications is much less pre-

dictable than reticular structures. This continuum of compositional, physical, and

chemical properties defines our vast reticular chemical space and motivates the

need for digitization to identify, understand, and control the possible topologies, se-

quences, and pore environments promised by multivariate frameworks.

On the basis of the foregoing discussion, we believe that two parameters amenable

to digitization will be important for digital exploration: topology is a global

descriptor serving as a blueprint for how the building units are connected to make

frameworks,62–64 and sequences are chemical information superimposed onto the

framework and used in the description of the environment within the pores.114
6 Chem 6, 1–23, September 10, 2020



Figure 2. The Current Workflow of Reticular Research

To date, reticular synthesis has largely relied on empirical knowledge in the design of experiments. Synthetic discovery involves trials of manual

synthesis and characterization in which those that ‘‘fail’’ to achieve crystallinity are unpublished and fed back for the redesign of synthetic conditions.

Successful trails enter the optimization and proper studies cycle and are eventually translated into publications and new knowledge.
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CURRENT WORKFLOW OF RETICULAR CHEMISTRY

Despite the exciting developments in reticular chemistry over the last two decades,

the digital gap persists mainly because of the high dependence of the research

workflow onmanual experimentation. Here, we choose the synthesis of new reticular

structures as an illustrative aspect of how the present workflow is generally imple-

mented (Figure 2). The process begins with an idea of linking a set of building units

of specific proposed composition and geometry with only empirical knowledge of

what structure(s) might be produced. Thus, in the experimental design, there is a

heavy reliance on experience and development of empirical approaches for the

prediction of the outcome of reticular synthesis. After choosing the building units,

synthetic conditions are considered, and the synthesis and subsequent characteriza-

tions are executed manually,118 again on the basis of the researcher’s empirical

knowledge and experience. ‘‘Success’’ is realized by the attainment of a crystalline

material. If the reaction is not successful, an iterative process is performed whereby

the researcher redesigns the experiments and varies the synthetic conditions again,

continually testing the outcome of each reaction by X-ray diffraction to assess the

crystallinity of the material. The most critical reaction parameters leading to crystal-

linity are narrowed down to a few, which are then optimized by feeding the findings

back into the cycle until ultimately the desired crystalline product is obtained.

Throughout this process, the researcher is screening conditions for crystallization

and making decisions on the validity of the approach employed and also on the

course of action to be taken for achieving a successful result. These decisions are

made on the spot and are guided by observations and, in some cases, the aid of

routine definitive measurements, but for the most part they rely on experience.

The quality of the decisions a researcher makes is directly related to the precision

of their observations. When success is achieved, the properties of the crystalline

solids are studied, and if they are found to be unique, the research is translated

into application. The process and its outcome are documented and published,
Chem 6, 1–23, September 10, 2020 7
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but the less successful or ‘‘failed’’ attempts are not given the same intense attention;

therefore, these are not well documented and often not published.

We wish to remark that for digitization to be successful as a scientific endeavor, data

obtained from ‘‘failed’’ experiments are equally important as those obtained from

‘‘successful’’ experiments. Accordingly, reporting both is an integral part of the

experiment and a necessary condition for understanding the chemical space that

digital reticular chemistry intends to explore.

Although this workflow has led to one of the most productive fields of science, namely

reticular chemistry, its digitization is urgently needed to address some issues with its cur-

rent practice. First, the heavy reliance on manual processes limits the speed with which

information can be uncovered about the system, and this hampers efforts of gaining the

maximum knowledge to guide informed decisions. This in turn detracts from idea gen-

eration and creativity. Second, poor documentation of those failed attempts to achieve

the desired results is detrimental to forming a complete picture of the innerworkings of

the system and deprives others of the benefit of having such information.119 Third, the

lack or primitiveness of generic, systematic, and shared databases for efficient knowl-

edge sharing works against the need for systematic passing down of information and ul-

timately the diversification of approaches for breaking new grounds in the field. Fourth,

discovery by empirical guidance and without the full benefit of having systematic knowl-

edge is disadvantageous in tackling complex problems and makes it difficult for others

outside reticular chemistry to engage in the process.
OUTSTANDING QUESTIONS AND EXPLORATION WITH DIGITAL
TOOLS

Here, we discuss some unanswered elementary questions that we expect digital

tools to be valuable in providing opportunities to address. Among the almost infinite

number of possible structures that could form from a combination of building unit

geometries, which of these will form in the synthesis? In this regard, our thesis has

been that the most symmetric structures are the most likely to form, and this has

served as a rough guide in helping to identify target structures.120 However, this

thesis does not always work, especially when the building units deviate from high

symmetry and when one uses an increasing number of different kinds of units of

different geometries to make multicomponent frameworks.121 To date, only an

empirical approach has been attempted to answer this question; no systematic,

comprehensive efforts have yet been reported in the field of reticular chemistry.

This raises the question, how can one design a structure if its ‘‘blueprint’’ is unknown?

The tendency at present is tomake a framework structure and then ask what property

that structure might have. It would be more productive and perhaps more meaning-

ful to ask, what framework design could provide a specific property? Thus, going

from structure to property is the present practice, but rarely the reverse is true as

it has not been a straightforward exercise.

Even when a framework is targeted, and its appropriate building units are identified

and used to make it, extensive efforts by the researcher are applied to finding the

answer to the question, under what conditions can the targeted framework be ob-

tained in crystalline form? As explained in the previous section, this is an arduous

task requiring not only rigorous and extensive variation of synthetic conditions but

also the need for accurate observations so that correct decisions are made concern-

ing the course of action to be taken for ultimately obtaining crystals.
8 Chem 6, 1–23, September 10, 2020
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Digital reticular chemistry should be able to address these questions by using ro-

botics for high-throughput synthesis, characterization, and screening of the proper-

ties of frameworks, and this, as we discuss below, should be closely coupled to data

mining and machine learning (Scheme 1). Specifically, if we succeed in bringing

these tools to routine utility, reticular chemistry will benefit in a multitude of ways.

It will be possible tomake discoveries unrealized with the current empirical approach

because of the speed with which the vast reticular space can be explored, mapped,

and analyzed. For example, finding a targeted framework in such a space, which is

normally like finding ‘‘a needle in a haystack,’’ will no longer be done by an empirical

approach but rather by amethodical and well-thought-out process provided by digi-

tization. As researchers become adept at this method of inquiry, they will gain new

intellectual skills where they begin to see new possibilities for discovery and perhaps

view their results in ways otherwise not possible. Indeed, as observations of chemical

reactions and their results (e.g., color and crystallinity) become progressively more

accurate with digitization, so will the ideas that researchers formulate and the path

they choose for their realization.

Fundamentally, as in the development and use of any new tools, their strengths and

weaknesses must be evaluated objectively, understood, and appropriately

managed. A reliable digital model needs to be developed for reticular chemistry

so that we do not risk falling in some of the less attractive aspects of digitization.

We can minimize some of these by ensuring that we are critical in excluding possible

data poisoning and biasing, overfitting, or falling into false minima.122 It will be

important to keep in check any tendency to over-trust the results coming from digital

tools. We wish to emphasize that although digital reticular chemistry will expand the

scope and diversity of frameworks and their applications, including perhaps trans-

forming how we do research, still questions dealing with the possible blunting of

serendipity and dampening the excitement of discovery as a result of digitization

may emerge as less desirable outcomes. However, in the last section of this contri-

bution, we outline how digitization, when employed properly, will in fact add to the

intellectual vitality and rigor of those practicing it. Nevertheless, in the fullness of

time, we expect that these new tools will advance the fundamental knowledge of

reticular chemistry and lead to faster and better solutions to societal problems.
PROPOSED WORKFLOW FOR DIGITAL RETICULAR CHEMISTRY

The workflow of digital reticular chemistry is shown in Figure 3, and it is based on four

pillars: (1) a reticular chemistry database that serves as themedium for all the storage

and conveyance of information, (2) a computational discovery cycle that serves as a

predictive workforce by analyzing information created by humans and/or robotics,

(3) an experimental discovery cycle that generates real experimental data on the ba-

sis of AI suggestions by using high-throughput methods, and (4) a human-digital

interface for queries and providing solutions to intellectual and practical problems

in reticular chemistry. Each of these pillars is discussed below in the context of digi-

tizing reticular chemistry.
Reticular Chemistry Database

Although there has been productive establishment of databases for MOF structures

(much less has been done for COFs),58,60,123–125 we propose the creation of a gen-

eral and all-encompassing database platform. This would include structures as well

as experimental and theoretical findings concerning synthetic methods, properties,

and applications. Our vision is to create an active platform allowing researchers to

deposit data and interrogate the body of knowledge in the field. This would be
Chem 6, 1–23, September 10, 2020 9



Figure 3. The Proposed Workflow of Digital Reticular Chemistry

A reticular chemistry database houses all information extracted from external databases, community feedback, and literature data mining. Such

chemical information is fed to and exchanged between the computational discovery cycle and the experimental discovery cycle, the former of which

proposes structures and calculates properties and the latter of which inquires AI for suggestions and generates high-throughput experimental data.

Finally, a human-digital interface is designed to interact with users by digesting linguistic queries and providing readable answers.
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designed as a widely accessible digital reticular chemistry tool organized in a

manner amenable to routine use by researchers worldwide. The hope is that it would

constitute a reliable destination for researchers’ inquiries with complete and up-to-

date information. Specifically, the platform would store and integrate chemical

information obtained from both computation and experiments. These would be

calculated data from the computational discovery cycle, imported data from outside

databases (e.g., the Materials Project126 and Materials Cloud126), extracted data

from existing experimental literature reports, data and observation from experi-

mental discovery cycle, and feedback and deposit of data from the community.

Progress is already being made in documenting experimentally discovered MOFs

and COFs with unique identifiers (MOFid and MOFkeys)127 and single-crystal struc-

tures (Cambridge Structural Database MOF subset,58,128 U-M MOF database,129

computation-ready, experimental [CoRE] MOF database,123,130 and CoRE COF
10 Chem 6, 1–23, September 10, 2020
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database125). These databases are already being used for simulation of the reticular

frameworks’ physical parameters (e.g., surface area and pore volume)131,132 and gas

sorption properties (e.g., methane uptake and selectivity)133 and the subsequent

establishment of simulated property databases (MOFDB134 and CURATED

COFs60). These efforts have been significantly accelerated by computational

screening of MOFs and COFs; however, our proposed reticular chemistry database

will be required for proceeding well beyond these efforts.

The comprehensive summary of chemical information from literature reports, such as

publications and patents, and their subsequent storage in an organized database format

is the next logical and necessary step toward a reticular chemistry database. This is

complicated by the issue of text-basedmedia that are discrete and not readily accessible

in digital form and thus cannot be directly imported to a database. Text mining and nat-

ural language processing (NLP) techniques should be implemented in the extraction of

chemical information from such sources. Available tools include rule-based text min-

ing135–137 and machine-learning-based NLP (e.g., recently developed mat2vec for inor-

ganic materials).138 To date, the collection of literature reports of reticular frameworks

has reached an enormous size, and their processing now and into the future requires

large-scale deployment of text mining and NLP protocols, which is achievable only

through the coordinated efforts of the global science community. Another important

aspect will be the documentation of all conducted experimental data, especially ‘‘failed’’

experiments—apractice that is not currently donebut we view tobeessential as an input

of the two AI-assisted discovery cycles discussed in the next two sections.

Our proposed efforts in the documentation of data from all sources mentioned

above paves the way for further mining and storage of chemical information through

techniques of knowledge base embedding (KBE).139,140 We anticipate that the

database will be represented in the hybrid form of factual entities (e.g., identifier

of compounds, structures, and properties) and quantitative parameters (e.g., den-

sity, specific surface area, and gas uptake). KBE involves the mapping of these en-

tities in a Euclidian space through vectorizing their coordinates to preserve their

structure. In this way, chemical knowledge can be properly represented as vectors

(relationships) between entities, and undiscovered chemical knowledge can be pro-

posed through missing vector prediction by KBE models. We anticipate that the

establishment of such a vectorized database to be a useful form, representing the

reticular chemical space and enabling machine-accelerated discovery.

In addition, building a comprehensive database would finally allow researchers to

compare different data sets and, importantly, put their own results in the context

of the entire field. In doing so, it would address one major challenge that is caused

by the current disparity of data. With the establishment of KBE andmachine-learning

models in the workflow, data cross-validation and correlation-based discernment

will be enabled to gradually enhance the robustness of the database (Figure 3). In

the future, the database’s enormous body and decentralized nature will require

reticular scientists to work as an integral part of the global science community,141

contributing data for populating the chemical space under uniform guidelines as

in the FAIR (findable, accessible, interoperable, and reusable) Data Principles.142

Only in this way can a standardized, high-quality, rich, and healthy reticular chemistry

database be used for AI-assisted discovery.

The Computational Discovery Cycle

This involves the entirely computation-based chemical discovery processes in digital

reticular chemistry. The cycle is characterized by a high level of reproducibility and
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scalability endowed by computation technologies.122 It provides extremely fast discov-

ery cycle, especially in comparison with laboratory synthetic screening and character-

ization, thereby reducing the time and cost, which otherwise would be unavoidable.

Computer-based structure generation is the first step in this cycle. Currently, several

geometry-based tools and algorithms (e.g., RCSR,62 Systre,143 ToposPro,64 AuTo-

GraFs,144 ToBaCCo,145 and TopoFF146) have been developed and used to generate

hypothetical structural databases (hMOFs124 and hypothetical COFs147,148). Future

research should include machine-learning-based algorithms to incorporate chemi-

cal information into such processes. In this way, the resulting hypothetical reticular

structures will be combined with experimental structures (e.g., CoRE MOFs) and

subjected to high-throughput calculations for property data prediction on the level

of molecular dynamics (e.g., Monte Carlo simulations for gas sorption),147,149,150

density functional theory (e.g., point charges and band structures),148,151,152 ab

initio calculations,153–155 and machine-learned models.154,155 These calculated

property data can be further used for statistical analysis (e.g., linear or non-linear

regression and principal-component analysis)149,156 or machine-learning methods

(e.g., support vector machine [SVM],157,158 random forest [RF],155,159,160 genetic al-

gorithm [GA],161,162 k-nearest neighbors [k-NNs],163,164 artificial neural networks

[ANNs],154,165,166 and other higher-level models) to decipher the properties of ma-

terials (AI-assisted property studies in Figure 3).

The generated results serve as a basis for the experimental discovery cycle and

represent a fundamental new discovery step toward optimizing material perfor-

mance and translating research. At this point, the knowledge gained is fed back

into the structure generation step of the cycle for further reiteration and

optimization. Such new candidates continue to be subjected to calculations for

the computational screening until they are fit to enter the experimental discovery cy-

cle. Inevitably, the computational discovery cycle is contemporarily the fastest way

to expand the landscape of the sparsely populated reticular chemical space and

has made the most significant progress with the cooperative efforts of re-

searchers.122,124,167 However, these algorithmic models are meanwhile not

exempted from the ‘‘no free lunch’’ theorem168 in that it is impossible to achieve

cost efficiency and calculation accuracy simultaneously. A current example is that

most of the existing reports of grand canonical Monte Carlo (GCMC)-based

screening of reticular structures for CO2 capture149,169,170 are particularly fast but

with insufficient representation of chemisorption,171 such as for alkylamine-function-

alized materials, and may thus lead to incorrect decisions on sorbent candidates.

Hence, the mutual connection between the computational and experimental discov-

ery cycles is essential to making robust progress in reticular discoveries: the theoret-

ical calculation results are validated with laboratory experiments172 to calibrate and

further evolve the calculation andmodels. In themeantime, the experiments are vali-

dated with theoretical predictions to check for experimental errors undetected

otherwise. On the whole, the computational discovery cycle should be the first

tool available for researchers in exploring and predicting the unidentified ‘‘ocean’’

of reticular chemical space and distinguishing it from the ‘‘islands’’ of known chem-

ical information for the purpose of optimization of materials properties.

The Experimental Discovery Cycle

This represents the discovery processes based on synthesis, characterization, and

performance measurements done experimentally. The cycle is similar to the current

reticular chemistry workflow but includes the extensive use of high-throughput pro-

cedures under AI-assisted guidance. This involves implementation of automated
12 Chem 6, 1–23, September 10, 2020
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high-throughput synthetic screening and automated structural and property charac-

terization in order to dramatically accelerate the exploration of the large reticular

chemical space. To date, these techniques are widely implemented in organic syn-

thesis,173–175 biology,176,177 and materials science119,178–181 but are only just begin-

ning to be used in reticular chemistry.182,183

In a typical experimental discovery cycle, the reticular framework candidates from

the computational discovery cycle will be subjected to synthesis, whose conditions

are proposed by the AI-assisted experimental design (Figure 3). The proposed syn-

thetic conditions are systematically screened by high-throughput experimental

tools, for example, automatic liquid handlers and solid dispensers for the dosing

of chemicals in each synthetic screening trials or robotic arms for sample handling,

which are all programmed through interfacing the machines to the output (recipes)

of AI-assisted experimental design. This is followed by high-throughput character-

ization,184 in most cases autosampler-equipped instruments, such as powder X-ray

diffraction and infrared spectroscopy, for unattended and unbiased data acquisi-

tion. During these processes, ‘‘failed’’ experiments can be set at the same impor-

tance level as successful samples and logged as a part of the reticular chemistry

database without biases.119 The experimental property data are obtained through

assessing the physicochemical behavior of the candidate structures, and this is fed

into the AI-assisted property studies and later into the AI-assisted translation of

research. Ideally, the result of the synergy between the two cycles is the most desir-

able reticular structure candidates for a specific application. Importantly, the exper-

imental discovery cycle is the only component of digital reticular chemistry that

generates real experimental data and observations, and it is thus the only way to

fill the reticular chemical space with experimental rather than just hypothetical data.
The Human-Digital Interface

It will be useful to deploy an interactive portal between the reticular chemistry data-

base and the users (academic, private and public industry, and government), which

converts the structured, vectorized information of computers into the semantic, lin-

guistic information of humans. This requires the achievement of an easy-to-access

linguistic interface (APIs185 and interactive websites186,126) that wraps around the

reticular database and allows for natural language queries without prerequisite

expertise in reticular chemistry. It also requires the general embedding of the data-

base for reticular chemical space and the knowledge that are capable of reasoning

and provide accurate output. It is necessary to deploy NLP techniques to fill the gap

between frontier discoveries of reticular chemistry and societal needs.

The four pillars of the digital reticular chemistry workflow are the basis for populating

the reticular chemical space with continuous information, but more importantly, they

will efficiently find frameworks with globally optimized performance for targeted ap-

plications. Although we have emphasized the sequence of going from basic science

to applications, various components of the two cycles would work very well for car-

rying out basic research into new synthetic and characterization techniques as well as

discovery of unusual chemical architectures. We believe the establishment of this

workflow requires the joint work of scientists in chemistry, physics, mathematics,

computer science, and engineering.187
THE PRACTICE OF DIGITAL RETICULAR CHEMISTRY

We anticipate that the new level of integrating digital tools into the workflow of retic-

ular chemistry will stimulate discovery and promote the availability of significantly
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richer data. These tools will further evolve into a means of asking and answering

questions otherwise not possible. In this section, we outline as examples three direc-

tions where digital reticular chemistry will make significant contributions.

Discovery of the ‘‘Infinite’’ Reticular Chemical Space

The prediction and design of structures with known composition can be generally

viewed as an extended crystal structure prediction question.188 Conventional crystal

structure predictions involve the generation of trial structures (arrangements of isolated

molecules, ions, or atoms) and calculation of the whole system’s energy to give the min-

imum configuration.189,190 Reticular chemistry is even more demanding because of the

complexity and variety of possible interactions holding the structure together, such as

covalent bonds, coordination bonds, and intermolecular forces. Further to be consid-

ered are host-guest interactions,191 molecular weaving,192 intercatenation,193 and

framework dynamics.194 Since reticular structures are extended, their topological tessel-

lation constraints add to the complexity of achieving strong bonding of building units.

Although computational tools for generating simple structures are available, only the

linker geometry and topological constraints are accounted for without the benefit of hav-

ing any chemical information. Using the reticular chemistry database, we can now

consider important factors such as reactivity, preferred conformation, secondary interac-

tion between building units, and interactions with guests. We note that this information

could be contributed through experimental and calculated data.

Furthermore, various downstream factors in the workflow can become design criteria

through established quantitative structure-property relationships (QSPR) models,133

such as predicted application performances and mechanical processability. This can

be integrated with the development of next-generation reticular specialized machine-

learning models to enhance the models in utilizing the chemical knowledge for tackling

optimizationproblems for practical applications. For example, basedon the existingma-

chine-learning model, chemical reaction networks,195 the reactants, products, and reac-

tions in the original model can be specifically adapted into the reticular chemistry sce-

nario as building units, crystals, and linkage formation reactions. The algorithm will

then be redesigned tomathematically represent the crystallization process, where build-

ing units are treated as networks. The evaluation function can be deployed considering

the global metrics of entropy, system energy, crystallinity, porosity, and QSPR functions

generated from the computational discovery cycle.

Structure to Property and Property to Structure

The quantitative study of the relationship between structures and their properties is

one of the key aspects for understanding the underlying chemical interactions in mo-

lecular and materials chemistry.133 The prediction of optimum structures for a given

property is the reciprocal of such processes, and is essential for the field to signifi-

cantly speed-up the discovery process. One practical method is the high-throughput

screening experiments of known reticular structures with the criteria of computa-

tional or experimental characterization methods, using ranking, statistical, or ma-

chine-learning methods to reach the optimum. However, the majority of current

models are black-box methods, yielding little to no information for understanding

the underlying relationships. We expect that the next stage of QSPR in digital retic-

ular chemistry to use highly and fully interpretable AI models196,197 for understand-

ing chemical information. From these, the information of the model’s decision flow

can be used for deciphering the underlying physical and chemical interactions and

cross-validating with observations and learning results from other processes.

Accordingly, correlations that are too subtle or too complicated for human percep-

tibility can be discovered.
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Ultimately, digital reticular chemistry aims to revolutionize chemistry discovery by

achieving inverse design, which means going from desired properties to the

discovery of frameworks with properties far beyond what can be found in nature.

Concurrently, this process is hindered by the low level of exploration of the reticular

chemical space. The situation will fundamentally change once a continuum of this

space is more thoroughly explored and chemical relationships understood. An

example is the new scheme of searching for compounds capable of CO2 capture.

Reticular frameworks are promising candidates and have been shown to have record

uptake for CO2 capture and storage.198–200 However, achieving a practical material

requires heat capacity, thermal conductivity, mechanical processability, H2O and O2

stability, and selectivity, yet they are mostly undocumented. Further complicating

this process is often the need to balance parameters whose behavior is unknown un-

der the industrially relevant conditions, such as the physical form of the material and

heat dissipation. In the current workflow, finding such optimal material is highly

impractical.

This problem potentially can be handled well by the digital workflow. First, the

embedded reticular chemistry database will be capable of vectorizing the require-

ments into a group, for instance, (1) high dynamic capture capacity, (2) high selec-

tivity of CO2 against gases such as N2, O2, SOx, and NOx, (3) appropriate stability

under the operating conditions, and (4) abundant thermal conductivity for fast

heat dissipation. Fuzzy search of the reticular chemical space and relationship pre-

diction are conducted accordingly to yield the first generation of candidates. AI-as-

sisted synthetic discoveries are then carried out through the experimental cycle, and

data generated are used for training the QSPR and structural generation model on

the fly. Next, the computational discovery cycle focuses on the virtual screening of

reticular frameworks by using data-improved simulation algorithms and sampling

the rest of reticular chemical space to make sure of the globality. The workflow

runs until a satisfactory candidate is consolidated.

Synthesis Conditions for a Target Framework

Discovering the optimal synthetic conditions for a target reticular framework is one

of the most essential quests for reticular chemists. The synthesis of reticular solids

involves the achievement of linkage bond formation, crystallization, and pore forma-

tion at the same time. This is accomplished by fine-tuning the starting compound(s),

solvent composition, temperature, and even feeding procedures, modulator usage,

heating schedule, and hydrolysis kinetics. The delicate balance required to optimize

these interconnected parameters involves a synthetic space of extraordinarily high

dimensionality. Needless to say, the majority of this parameter space has not

been discovered. As such, this inverse synthetic design (going from structure to syn-

thetic conditions) is difficult to implement at the current stage of research and thus

calls for the deployment of digital tools. Preliminary results along these lines have

already been reported for the synthesis of HKUST-1.183

An illustrative example of this scenario is the synthesis of MOFs based on titanium-

oxo clusters. The synthetic chemistry of this class of structures features harsh condi-

tions, sensitivity to moisture, and a large variety of Ti-oxo clusters (with different ge-

ometry and coordination numbers) possible to form in similar conditions.14,201,202

Such complexity has hindered the field in the development of Ti-oxo MOFs, and

to date, the variety of reported structures remains limited. However, because of their

unique band structure and photocatalytic activity, Ti-oxo MOFs are still highly

desired in the field. The high-throughput synthesis technology has preliminarily

shown its power in tackling this grand challenge. Successful utilization of human-
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guided high-throughput synthesis was achieved in 2019,203 where new photoactive

MOFs based on Ti3(m3-O) clusters were achieved. However, the experimental design

in this process was reported to bemajorly guided by the forward design of synthesis,

and a systematic inverse reasoning was not present until a successful product was

obtained. We emphasize that in the next level of digital reticular chemistry, the

powerful tool of high-throughput synthesis and characterization will be additionally

guided by AI models. By employing them, we will finally be capable of systematically

establishing the underlying chemical relationships, in this case, the correlation be-

tween the hydrolysis of Ti species and the final structure or the initial concentration

and nucleation kinetics.

Digitization of Multivariate Arrangements and Their ‘‘Evolution’’ in the Pores

Multivariate MOFs provide a platform where digitalization addresses a high level of

structural complexity and functionality. Here, we borrow the concept from the evo-

lution of enzymes to describe and conduct the optimization of multivariate reticular

systems for catalysis. Multivariate MOFs, where chosen combinations of functional-

ities are precisely positioned inside framework pores, harbor complex and functional

chemical environments that resemble an enzyme pocket.204 While the structure and

function of enzymes are dictated by the sequence of amino acids, the pore chemistry

of multivariate MOFs is encoded by the spatial arrangement of the installed func-

tionalities. The high definitiveness of the distance, orientation, and chemical identity

of functionalities provides quantitativemetrics that can be used to digitize the chem-

ical environment within the multivariate pores. Such metrics become what we refer

to as the ‘‘genome’’ of multivariate MOFs, which features vast diversity and tunability

as alluded above and, more importantly, can be expressed into a specific function.

A fundamental question in this field is what arrangement of functionalities encodes

for the best catalytic performance. Such correlations have yet to be established, but

they become immediately addressable given the advancement of digital tools. In

this context, each set of the geometrical parameters of functionality corresponds

to an experimentally determined catalytic performance, including yield, selectivity,

efficiency, and cyclability. While the evolution of an enzyme pocket occurs when the

fittest survives, the ‘‘evolution’’ of a multivariate pore is conducted by human selec-

tion, where its genome is screened within the frame of high-throughput experi-

mental discovery cycle for optimal catalytic performances (Figure 4). This process

is expected to be largely accelerated by the deployment of deep reinforcement

learning methods,205 where deep neural networks165 are used for decision making,

guiding the navigation of the evolutionary trajectories of MOFs. It is thus envisioned

that the robotics and machine-learning algorithms developed for digital reticular

chemistry will provide substantial reduction of the natural evolutionary time scale

into a laboratory one, accelerating the discovery of efficient catalysts.

The gradual accumulation of data in this process in turn enables the exploration of

multivariate MOFs to be performed on the computational level. Machine-learning

methods such as self-organizingmaps (SOMs),208 k-NNs, and convolutional neural net-

works (CNNs)49 can be used for the extraction of significant structural features from the

experimental dataset, which provides the basis for structure generation and develop-

ment of new simulation methods in the computational discovery cycle. In addition,

interfacing the reticular chemistry database with enzyme databases209,210 will allow

KBE to utilize ‘‘experiences’’ learned from the enzyme field by importing the biological

structure-activity relationships into the reticular chemical space. The integration of

multi-disciplinary knowledge will extend our ability to understand catalysis and offers

a unifying framework to assess the general properties of catalysts.
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Figure 4. A Proposed Strategy for the Optimization of Multivariate MOF Catalysts and Its Analogy to Enzyme Evolution

To find an efficient MOF catalyst, functionalities are installed on the MOF backbone and screened for generating a variety of pore environments with

diverse charge and steric configurations. Promising candidates for catalysis are selected for further functionality variation over multiple iteration cycles.

For illustrative purposes, five arbitrary nodes (A–E) on the optimization trajectory are presented in surface filling of their pore environments, where

functionalities are colored qualitatively by electrostatic potential (negative, red; positive, blue). The final MOF catalyst is therefore optimized to best

stabilize the transition state of the substrate (orange, arbitrary structure in ball-and-stick model). In comparison, the natural evolutionary history of

b-lactamases is demonstrated. Under the survival threat of antibiotics, a peptidase was repurposed as b-lactamases206 and selected for increased

catalytic function by evolution on a planetary timescale.207 These ancestral enzymes, as well as the extant one, corresponding to the five nodes along the

evolutionary pathways, are shown in surface filling and colored by electrostatic potential to highlight the transformation of their functional pockets.
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THE HUMAN ELEMENT IN DIGITAL RETICULAR CHEMISTRY

Our review expressed in this contribution comes from a real need for a transforma-

tive change in the way we conduct chemical research exemplified by that being done

in reticular chemistry. Our proposal for the digitization of our chemistry is strength-

ened by the large chemical space already accessed by current research, as well as

the potential that its findings indicate for a much more extensive and diversified

space of composition, structure, and properties. The digital tools we wish to deploy

in the exploration of this space for the objective of asking better questions and solv-

ing more complex problems will inevitably affect not just the research as outlined

above but also the researcher.

Arguably, we as scientists do research for the thrill of discovery and to be recognized

for those discoveries. The more closely we adhere to the scientific values of honesty,

objectivity, curiosity, critical thinking, creativity, and unbiased view of data, the bet-

ter scientists we will become. We believe digitization of reticular chemistry will

contribute to the enhancement of all these values. It will increase drastically transpar-

ency due to sharing of data. The reliance on data-driven observations rather than just

empirical and experiential notions will increase the precision in making observations

and therefore arrive at sound and scientifically valuable conclusions about the sys-

tem under study. The speed with which problems can be addressed will translate
Chem 6, 1–23, September 10, 2020 17
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into better and faster decisions in determining the options for experiments to be un-

dertaken and ultimately the course of research. The impact on emerging scholars in

our laboratories could be immense: the availability of comprehensive and organized

data will empower new researchers to generate ideas of their own and lessen their

reliance on the more senior researchers. This will boost their confidence and, in a

way, ‘‘democratize’’ the process of idea generation, thereby changing it from the

current state of being largely a top-down to a bottom-up process. This will be a

boon for bringing further innovation to fundamental and applied science of reticular

chemistry. When we have a full view of the vast reticular space, not only will we be

able to address convergent problems (specific optimization challenges) better and

faster, but we will also be able to pursue divergent problems (exploratory and curi-

osity-driven inquiries) with the confidence of having the full benefit of the organized

available data. The latter may very well lead researchers to ask questions not yet

imaginable because of the limited view of the currently available data.

Beyond the researcher, the culture of science is bound to be transformed. For

example, in having all experimental results and theoretical determination in the field

within every scientist’s reach, it will be much easier for researchers to consult with

other experts worldwide on their findings, thereby creating a rapid feedback loop,

an aspect not yet practiced efficiently under the current workflow. The impact of

creating such an instant feedback loop will help in building a global science culture

by meaningfully connecting scientists across borders.

We close by remarking that, since digitization potentially makes data available to

everyone, any temptation for less scholarly activities, such as unfair practices,

hype, misinformation, poor citations, and even ‘‘political’’ networking will be more

easily challenged and discouraged by the community at large. The net effect will

be a more transparent and professional scientific enterprise, leading to wider accep-

tance and support by our society. Fundamentally, digital reticular chemistry will

transform a largely empirical science to a data-driven science, and in doing so, we

will achieve a new level of sophistication in addressing larger and more complex

problems and hopefully make more significant discoveries.
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Côté, A.P., and Yaghi, O.M. (2008). Reticular
synthesis of covalent organic borosilicate
frameworks. J. Am. Chem. Soc. 130, 11872–
11873.

85. Jiang, S.Y., Gan, S.X., Zhang, X., Li, H., Qi,
Q.Y., Cui, F.Z., Lu, J., and Zhao, X. (2019).
Aminal-linked covalent organic frameworks
through condensation of secondary amine



ll

Please cite this article in press as: Lyu et al., Digital Reticular Chemistry, Chem (2020), https://doi.org/10.1016/j.chempr.2020.08.008

Review
with aldehyde. J. Am. Chem. Soc. 141, 14981–
14986.

86. Uribe-Romo, F.J., Hunt, J.R., Furukawa, H.,
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