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The geometry of periodic knots, polycatenanes
and weaving from a chemical perspective: a library
for reticular chemistry

Yuzhong Liu, a Michael O’Keeffe,*b Michael M. J. Treacy c and Omar M. Yaghi *ad

The geometry of simple knots and catenanes is described using the concept of linear line segments

(sticks) joined at corners. This is extended to include woven linear threads as members of the extended

family of knots. The concept of transitivity that can be used as a measure of regularity is explained. Then

a review is given of the simplest, most ‘regular’ 2- and 3-periodic patterns of polycatenanes and

weavings. Occurrences in crystal structures are noted but most structures are believed to be new and

ripe targets for designed synthesis.

1. Introduction
1.1 Knots, catenanes and weaving

If a knot is tied in a length of string and then the ends of the
string are joined, one will have a knotted loop. This is what
mathematicians consider as a knot. If a drawing is made of the
knot it will be found that, at points, pieces of string cross. The
minimal number of crossings in such a drawing is the crossing

number of the knot. To make a knot in a single loop, one needs
at least 3 crossings (i.e. crossing number = 3, Fig. 1).

Suppose now two loops are linked together so they cannot be
separated without breaking the string – this also is a knot. The
simplest such link (a Hopf link) has a crossing number of 2.

Knots are given a symbol nm
k indicating that m loops form a

knot with n crossings. k is an arbitrary serial number to
distinguish knots with the same values of n and m. A compre-
hensive listing of knots can be found at the Knot Atlas.1 A good
introduction to knot theory for the non-mathematicians is the
book by Adams.2

In chemistry, linked molecular loops (rings) are known as
catenanes and multiple linked rings are polycatenanes.3,4

Molecular knots and catenanes have been studied extensively
for 50 years and are the subject of excellent reviews.5–8
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In this article, we present an approach to this subject with an
emphasis on periodic structures from the point of view of reticular
chemistry.9 In reticular chemistry atoms, or molecular groups of
atoms (secondary building units, SBUs), are joined by links into
symmetrical frameworks notably in materials such as metal–organic
frameworks (MOFs)10 and covalent organic frameworks (COFs).11

The geometry is abstracted as nodes joined by straight links. In
application to knots and related structures the straight links are
called sticks. They meet in pairs at two-coordinated vertices (we term
these corners). The loops of knots now become (generally non-
planar) polygons. In the jargon, such embeddings of knots are
referred to as piecewise linear. This article is concerned with
piecewise linear descriptions of polycatenanes and weavings.

In modern mathematics of, for example, periodic polyhedra
(Grünbaum–Dress polyhedra),12 faces (rings) are allowed to
become infinite and take shapes such as zigzags and helices
with linear segments. Accordingly, we consider entanglement
(weaving) of threads as part of the same structure family as
knots and catenanes. In particular, we consider threads as also
made up of corners and sticks.

For many structures, we give a three-letter (lower case, bold)
identifying symbol. In some cases, we use the symbols abc-w

and abc-y for respectively a weaving or a polycatenane derived
from a 3-periodic net abc, which can be found in the RCSR
database.13

1.2 Transitivity, the minimal transitivity principle and regular
structures

In the theory of graphs (nets) and tilings, vertices related by the
intrinsic symmetry are said to be the same kind. If there are
p kinds of vertex the graph is vertex p-transitive. For a net
characterizing a crystal structure the transitivity p q indicates
that there are p kinds of vertex and q kinds of edge.

Of the more than six million distinct polyhedra with 12
vertices only the five vertex 1-transitive (often abbreviated to
‘vertex transitive’ when p = 1) are of special interest in chemistry.
Similarly, of the essentially infinite number of periodic graphs
(nets) the principle of minimal transitivity states that the net
formed by linking SBUs is likely to have the minimal transitivity
consistent with the starting materials.14

In tilings of the sphere (polyhedra) or 2-dimensional tilings,
the transitivity p q r indicates that there are p kinds of vertex, q
kinds of edge and r kinds of face. The five regular polyhedra
and three regular plane tilings are those with transitivity 1 1 1.15

They are of special importance to structural chemistry.
For crystal nets, we have the algorithms of Systre to deter-

mine the symmetry and transitivity.16 However for knots and
weavings, we must determine the symmetry by inspection then
construct a model with sticks and corners and finally determine
the transitivity pqr which now indicates the numbers of kinds
of, respectively, corners, sticks and rings or threads. Note that
as different rings and threads do not share corners or sticks
p and q must be Zr. Structures with transitivity 1 1 1 we term
regular. We find that 3-periodic catenanes and weavings are

Fig. 1 The simplest knots shown as sticks and corners. In the trefoil and
cinquefoil knots, symmetry-related sticks have the same color.
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particularly rich in regular structures, which should be prime
targets for future synthesis.

1.3 Symmetry and symmetry groups

All of the structures we describe in detail are 3-dimensional.
The 3-periodic structures have symmetry that is one of the
230 space groups. We assume the reader has some familiarity
with these. The 2-periodic structures will have one of the 80 layer
group symmetries.17 It is one of the advantages of the Hermann–
Mauguin system of symbols for symmetry groups that layer
group symbols are interpreted exactly as space group symbols.
The lattice is 2-dimensional and always defines the ab plane so
there are no translational components of symmetry operations
along c. Layer group symbols are distinguishable from space
group symbols as the lattice symbol is always lower case ( p or c).
For 2-periodic weavings and polycatenanes, there is the further
restriction that there cannot be a mirror normal to c. Remarkably,
we have not found the symmetry of weavings given anywhere in the
literature. A mathematical account of weaving simply states that the
symmetry must be one of the seventeen 2-dimensional ‘wallpaper’
groups, but no symmetries were given.18

We briefly mention 1-periodic structure such as chains and
braids. They have rod group symmetries. In one dimension,
there is no crystallographic restriction of the order of rotations,
but our examples have crystallographic symmetries recognizable
as the lattice symbol is p for the 1-periodic lattice.

1.4 Related topics

Here we briefly mention some related topics that we do not
discuss further in this article. These systems are not entirely
based on weaving of threads and rings. They have been fully
discussed elsewhere. We note that they are not directly con-
cerned with the topic of periodic structures composed of solely
corners and sticks – catenanes and weavings.

Interpenetrating nets. When periodic nets interpenetrate,
rings on component nets become catenated. An early review
described many compounds, particularly MOFs with structures
based on interpenetrating nets.19 Other detailed reviews of similar
materials have ensued.20–23 Several papers on the geometry
of interpenetrating nets have also appeared. The introduction
of the Hopf ring net (HRN) greatly aids in the characterization of
interpenetration.20 A comprehensive account of symmetrical
embeddings and properties of interpenetrations has been
given.24 In that paper it was remarked that one of the first crystal
structures (that of cuprite, reported over 100 years ago) was
based on interpenetrating dia (diamond) nets and so was the
first chemical structure observed to have catenated rings. In that
paper, it was also remarked that in one reported crystal structure
each ring was catenated to 634 others – far beyond the dreams of
molecular chemists. A related paper25 discussed the optimum
embeddings of such nets from a group-theoretical viewpoint.

Rotaxanes. Many fascinating rotaxanes have been reported.26–29

A simple rotaxane is not a knot. In periodic polyrotaxanes the
components are interlocked but the formal description of the
structures would require nodes of coordination number greater
than two as well as corners and sticks. These structures have been

reviewed recently.19,30 A periodic MOF structure with macrocycles
interlocked on links was reported31,32 and a number of similar
structures more recently33–35 but these likewise do not fall in the
scope of the present article.

DNA origami. The construction of geometric shapes from
DNA strands, generally known as origami is sometimes referred
to as weaving. However, it does not fit into the subject as
discussed here and we simply refer the reader to recent
comprehensive reviews.36–38

2. 0- and 1-periodic structures
2.1 Some simple knots

Knots are 3-dimensional and their symmetries are one of the
point symmetry groups of Euclidean space. Fig. 1 shows the
three simplest single-loop knots with respectively crossing
numbers 3, 4, and 5. These are the structures of almost all
reported molecular knots,39–41 although a molecular knot with
8 crossings has recently been reported.42

Knots can always be formed from straight sticks and the stick
number is the minimal number of sticks required. Minimal stick
configurations generally have less than maximum symmetry.
Here, we are interested in the maximum symmetry configura-
tions and so our structures generally require more edges.

The trefoil knot, symmetry 32 (D3) has transitivity 1 2 1 and
can be formed from 6 sticks, so the stick number is 6. The
cinquefoil knot, symmetry 52 (D5), also has transitivity 1 2 1. In
the symmetric conformation illustrated there are 10 sticks, but
note that the stick number for this knot is 8. The figure-eight
knot with crossing number 4 has only symmetry 222 (D2) and
transitivity 4 4 1 making it a much more challenging target for
designed synthesis.43

2.2 Linked pairs of rings

The simplest pair of linked rings, the classical catenane, has
crossing number 2 and is generally known as the Hopf link. It is
shown in two ways in Fig. 2 to emphasize that the link cannot
always be associated with just two corners. In the most symmetrical
conformation (shown) the symmetry is %42m (D2d) and the transi-
tivity 2 2 1. For non-concentric linked rings, we can identify a link
point as the barycenter (average of all corner vertices) of the two
rings. An important step in synthetic chemistry was the introduc-
tion of using a metal template at the link point to facilitate the
formation of catenanes.44–48

Fig. 2 The simplest links of pairs of rings. Sticks and corners of the same
color are related by symmetry.
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Also shown are the double link (4 crossings) known as the
Solomon link and the triple link. The latter has 12 edges, but in
its most symmetrical form, it has 18 edges (Fig. 2) and has the
shape of the star of David, so we call it the David link. Both
these knots have transitivity 2 2 1.

2.3 Polycatenanes

Polycatenanes have more than two linked rings. There are two
ways to link three rings so that each is linked to the other two
(Fig. 3). There are six crossings and the knot symbols are 63

1 and
63

3. We meet 63
2, in which no pair of rings is linked, in the next

section. The illustration of 63
1 (top right in the figure) clearly

shows the six crossings and the symmetry 32 (D3). Flipping one
link (from over-under to under-over) converts 63

1 to 63
3 (top

left in the figure) apparently destroying the symmetry. But
surprisingly 63

3 also has an embedding with symmetry 32 as
shown. We also show a piecewise linear embedding of 63

3 made
with three triangles, again with symmetry 32 and transitivity 2 2 1.
In that embedding three corners are now about a central
symmetry point in a conformation we refer to in our descriptions
of 3-periodic weavings as a triple crossing. Directed syntheses of
a 63

3 [3]catenane have recently been reported.49,50

Also shown in the figure is the simplest form of a linear
chain. This has symmetry p42/mmc and transitivity 1 2 1. A
chemical analogue has been reported recently.51

Later we show four rings with each linked to the other three.
This has transitivity 1 1 1 and we believe it to be the simplest
regular knot (transitivity 1 1 1).

2.4 Borromean rings

The famous Borromean rings are another way of linking 3
rings, again with six crossings, knot symbol 63

2. Fig. 4 shows the
structure as interwoven circles. It can be seen that it may be
derived from 63

3 (Fig. 5) by reversing the three outer crossings.
In a maximum-symmetry embedding the structure is cubic,
symmetry m%3 (Th). Two embeddings as sticks in that symmetry
are shown in Fig. 4: with one kind of corner, transitivity 1 2 1,
and with one kind of stick, transitivity 2 1 1. This knot has what
we term the Borromean property: although the rings are linked
in the sense that no ring can be separated from the others
without breaking sticks (links), no two rings are linked. Mole-
cular Borromean rings have been achieved by directed assem-
bly of eighteen components.52

2.5 Brunnian knots and braids

A Brunnian knot is composed of multiple rings and has the
property that if one ring is removed the remaining rings are not
linked. The Borromean rings are the simplest such Brunnian
knot. Fig. 5 shows the first two of a series of Brunnian knots
with three loops and a multiple of six crossings.

If the number of crossings is increased to infinity, the
structure is that of a three-strand braid. The braid is intrinsi-
cally a rather simple structure, symmetry p2/c. As made with
flexible strings (or hair) the configuration is as shown in the top
illustration with transitivity 2 2 1. Braids are well known in
materials like MOFs.53 It is interesting that some of these have
a less-curved embedding, also shown in the figure, that has the
same symmetry but transitivity 1 2 1. The adoption and
recognition of this structure emphasizes the utility of the
stick-and-corner description of molecular structures.

A characteristic of three-component Brunnian structures,
say green, red, blue, is that the crossings are such that green
is over red, red over blue and blue over green (Fig. 5).

Also shown in the figure is a Brunnian chain of what are
known as ‘rubber band’ links. Pairs of loops are not linked
topologically and can be separated if sticks are allowed to bend.
But the whole chain is linked. The symmetry is p%4m2 and the
transitivity is 1 2 1.

Fig. 3 Simple polycatenanes with Hopf links. Top: A cyclic [3]catenanes
showing on left 63

3 and on the right 63
1. Below that are shown alternative

embeddings of 63
3 with 32 (D3) symmetry. The linear chain is an infinite

catenane. In the embedding shown there is one kind of corner and two
kinds of stick (red and blue).

Fig. 4 Left: Borromean rings (knot 63
2) as circular loops. Center (transitivity

2 1 1) and right (transitivity 1 2 1) with cubic symmetry. Note that no two
rings are linked. In the drawing on the right the corners are at the vertices
of a regular icosahedron.
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2.6 Regular polycatenanes

We identify seven regular finite polycatenanes with transitivity
1 1 1 (Fig. 6). We have not found them formally described
elsewhere, or realized as molecules, although some are familiar
to model builders. We can confidently predict molecules based
on these structures will be found in future. They can be
considered as regular weavings on the sphere – on the sphere
a thread becomes a ring – emphasizing again that polycatenanes
and woven fabrics are part of the same structure family. Also
shown in the figure (bottom right) is a well-known regular figure,
symmetry 532 (I), composed of five catenated tetrahedra with
vertices forming a regular rhombic dodecahedron. We know of
no other finite regular figure formed from catenated polyhedra –
we identify infinite periodic structures later.

The simplest regular polycatenane (knot) 124 is composed of
four equilateral triangles, each linked to the other three, and
has symmetry 432 (O). The vertices are at the positions of those

of a regular cuboctahedron (3.4.3.4). The ring link points are at
the vertices of a regular tetrahedron.

The polycatenane 246, symmetry 432 (O), is made of six
squares, each linked to four others. The corners form an
Archimedean snub cube (34.4) and the link points form a
cuboctahedron (3.4.3.4). The polycatenane 306, symmetry 532 (I),
is formed from six concentric pentagons, each linked to the
other five. The corners are at the vertices of an Archimedean

Fig. 5 Examples of Brunnian knots. The top two have three finite rings
and removing one ring leaves the other two unlinked. The braid is the
corresponding structure with infinite rings (threads). In the upper embed-
ding there are two kinds of corner and one kind of stick (transitivity 2 1 1). In
the lower, one kind of corner and two kinds of stick (transitivity 1 2 1). Note
that in each case red is above blue, blue above green and green above red.
The rubber band chain also has the Brunnian property. In a finite chain,
rings at the end can be removed by bending, but not by breaking, the
sticks.

Fig. 6 Some regular polycatenanes and a regular linkage of five tetra-
hedra. For the polycatenanes pq indicates p crossings and q rings (loops).
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icosidodecahedron (3.5.3.5). This structure is known as Makalu
to origami enthusiasts.

The polycatenane 248 is formed from eight triangles, each
linked to three others. The corners are at the vertices of a snub cube
and the link points form a cuboctahedron (as in 246 above). The
polycatenane 6012, symmetry 532 (I), is formed from 12 pentagons,
each linked to five others. The corners are at the vertices of an
Archimedean snub dodecahedron (34.5). The polycatenane 12012,
symmetry 532 (I), is formed again from 12 pentagons, each now
linked to ten others. The corners are again at the vertices of a snub
dodecahedron. The polycatenane 6020, symmetry 532 (I), is formed
from 20 triangles each linked to three others. The corners are again
at the vertices of a snub dodecahedron.

3. 2-Periodic structures
3.1 The lattice plane

In 2-periodic structures there will be an underlying lattice
either primitive, symbol p or centered rectangular, symbol c.
The lattice vectors are always a and b. They define a plane, the
lattice plane of the structure.

3.2 Biaxial weaving

The weaving of threads into fabrics is one of the oldest human
crafts and 2-periodic weaving patterns are found, for example,
in MOFs. The classical (warp and woof) weavings are of threads
in two directions at right angles (biaxial). The literature on
ornamental weaving is vast, but of little relevance to our
purpose, which is to identify structures of minimal transitivity.

We restrict ourselves to structures that have one kind of
thread which have been termed isonemal.18 Such threads are
characterized by a sequence of integers ( p,q,. . .) which states that
at every crossing for a thread there are p over, followed by q
under, followed by . . . We just consider ( p,q). With the exception
of (2,2), for an isonemal weaving successive parallel rows must
be displaced by one crossing. Such weaves are known as twills.

Weaving patterns are often illustrated by designs that show
the weaving patterns by sequences of black and white squares
for under and over crossings. Fig. 7 shows the design for a (3,2)
twill. Note that the sequence of black and white is the same for
every horizontal and vertical row as it must be for an isonemal
weaving. If p a q the fabric is not balanced – the two sides are
not the same.

The first, and perhaps obvious, result is that there is just one
regular biaxial weaving with transitivity 1 1 1 (Fig. 8). This is
generally known as plain weave but also known as box weave,
calico, tabby, taffeta, etc. We call attention to the symmetry p4/
nbm that indicates the presence of all possible glides (a, b, n) in
the layer lattice plane. It is the presence of such glides that adds
to the attractiveness of weaving patterns. Fig. 8 also shows
isonemal weavings ( p,q) for p r q r 3. Clearly ( p,q) is the same
as (q,p) but viewed from the other side. Data for these structures
are in Table 1.

The shape of the threads themselves is relevant to the
design of crystals (Fig. 9). (1,1) gives a zigzag with transitivity

(corners, sticks) = 1 1. ( p,p) gives a ‘crankshaft’ pattern of
transitivity 1 2 whereas the general case (‘gaptooth’) ( p,q) gives
transitivity 2 2. Examples of woven coordination networks
include plain weave54–57 and a (2,2) twill.58

3.3 Triaxial weave – kagome

In triaxial weave, three coplanar sets of threads at 1201 to each
other are woven. It should be clear that isonemal weavings
must be balanced [e.g. threads ( p,p)]. The simplest, and only
regular, has (1,1) threads (kagome, Fig. 10). This weave is in a
sense analogous to the Borromean rings. There are three sets of
threads and no two sets are interwoven. It may be seen in the
figure that red is over blue, blue over green, and green over red.
A hydrogen bonded structure based on the kagome weave has
been reported.59

In kagome weave, commonly made with flat ribbons or
wooden laths, the plane is not covered. Indeed, kagome is
Japanese for ‘basket eye’. The next simplest triaxial weave,
symbol wvm, is (3,3) and now the plane can be covered as
shown in Fig. 10. This style is known as mad weave.60,61 It has
transitivity 1 2 1.

In three-way weave, there could be triple crossings at which
three threads meet.18 Now at a crossing, a thread can be at the
bottom (A), middle (B), or top (C). For an isonemal weave A, B
and C must occur in equal numbers in a thread so the simplest
sequence is ABCABC. . . and this is shown as wvn in the figure. It
has transitivity 1 2 1.

3.4 Chain-link weave

In the 2-periodic weaves discussed so far, the diagonals between
two corners at a crossing are normal to the lattice plane. By
contrast in chain-link weaving the diagonals lie in the lattice
plane. The two simplest isonemal examples are shown in Fig. 11
and data (symmetry etc.) in Table 1. The one with symbol wvx is

Fig. 7 The design of a (3,2) twill. Horizontal and vertical rows have the
sequence three white, two black squares.
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most nearly regular with transitivity 2 1 1. It is chiral and the
underlying structure of chain-link fences which appear to be
always made with right-handed helical threads as shown in the
figure. It should be a good target for designed synthesis. Knitting
patterns have the same kind of link. The simplest, wvz, also
shown in Fig. 11, is a variation of ‘stockinette’ knit. It has
transitivity 1 2 1, and again should be a good target for synthesis.

2-Periodic chain-link weaves have been reported in a MOF.62

They are sometimes referred to as ‘chicken wire’ but in chicken
wire the two-crossing link of chain link is replaced by multiple
crossings, typically about 10.

3.5 Two-periodic polycatenanes

In polycatenanes we restrict ourselves first to structures with
rings joined by double crossings (Hopf link) to any other ring

Fig. 8 The simplest biaxial weavings. All but wvc are twills.

Table 1 Geometric data for 2-periodic weavings. For fabric weaving (p,q) after the symbol means for each thread p over and q under crossings. The
entries for stick(s) are the coordinates of corners linked to the corner with coordinates given in the ‘corner’ column to the left

Symbol Trans Symmetry Cell a, b Corner Stick(s)

wva (1,1) 1 1 1 p4/nbm 1.414, 1.414 1/4, 1/4, z 3/4, 3/4, �z
wvb (2,1) 2 2 1 c222 1.714, 4.247 0, 0, z 0.063, 1/2, �z

0, 0.333, z 0.167, 1/2, z
wvc (2,2) 1 2 1 p4/nbm 2.828, 2.828 0, 1/4, z 1/4, 0, �z; �1/4, 0, z
wvd (2,2) 1 2 1 pbaa 2.818, 1.414 0.375, 1/4, z 0.625, 3/4, �z; 0.125, �1/4, z
wve (3,1) 2 2 1 p222 1.414, 2.828 0, 0, z 0.25, 1/2, �z; 0.75, �1/2, �z

0.25, 1/2, �z
wvf (3,2) 2 3 1 c222 1.414, 7.070 0, 0.2, z �1/2, 0.3, z; 1/2, 0.1, �z;

0, 0.4, z 1, 0.6, z
wvg (3,3) 1 2 1 pban 4.247, 1.414 0.083, 3/4, z �0.083, 1/4, �z; 0.417, 3/4, z
kgm-w (1,1) 1 1 1 p622 1.0, 1.0 0, 1/2, z 1/2, 0, �z
wvm (3,3) 1 2 1 p622 1.732, 1.732 0.167, 0.833, z 0.333, 1.167, �z; �0.167, 1.167, z
wvx 2 1 1 c222 1.4, 2.8 0.15, 0, 0 �0.25, 0.25, z

�0.25, 0.25, z
wvy 2 2 1 pban 1.4, 2.8 0.4, 1/4, 0 1/4, 0.35, z; 1/4, 0.15, �z

1/4, 0.35, z
wvz 1 2 1 pbam 3.0, 4.0 0.35, 0.85, �z 1.15, 0.85, �z;

0.65, 0.15, z

Fig. 9 The shape of one thread in simple weavings. Red and blue sticks
are not related by symmetry. (1,1) is ‘zigzag’ and (2,2) is ‘crankshaft’.
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and to those with just one kind of link point (all link points
related by symmetry) and one kind of ring. We consider that
these are the most likely targets for designed synthesis. In such
structures the link points must be at the vertices of a uninodal
(vertex transitive) 4-coordinated (4-c) planar net. There are just
three of these: the net, sql, of the square lattice (44), the kagome

net, kgm (3.6.3.6), and the ‘hexagonal tungsten bronze’ net, htb
(3.4.6.4).

The structures have 3, 4, or 6 crossings per ring. Structural
data are collected in Table 2. In the one (cme) with 3 crossings
per ring, and shown as triangles in projection, the rings have
six corners and are in fact nonplanar hexagons. Likewise the
rings in the one (cms) with six crossings per ring, and derived
from kgm, are really dodecagons.

There are three structures with 4 crossings per ring and one
kind of link point derived from sql. The projections shown in
Fig. 12 are shown as quadrangles, but in cmi and cmj they are
in fact nonplanar octagons. However, in cmk the rings can be
planar rectangles. Indeed, this structure with transitivity 1 2 1 is
the most nearly regular 2-periodic chainmail. We believe it is
the only one that can be made with one kind of planar ring. It
is not surprising therefore that it was very commonly used in
chainmail armor. In that context it is known as the ‘European
four-in-one’ mail. All other chainmail armor designs we have
seen use at least two kinds of ring (i.e. not all related by
symmetry).

Fig. 13 shows the polycatenanes derived from htb. There are
two (cmm and cmn) with four crossings per ring. The rings in
the catenanes with 6 crossings per ring are all dodecagons. cmt
(transitivity 2 1 1) is particularly interesting as it has the
Borromean property that no two rings are linked (so we might
refer to the link points as ‘virtual link points’). The rings cannot
be made into (skew) hexagons without sticks intersecting.
Interestingly it occurs in a MOF structure63 in which the angles
at one type of corner are very close to 1801. However, inter-
sections are avoided by reducing the symmetry so that there are
now two kinds of ring. Anyway, those corners cannot be ignored
as they correspond to 2-c metal atoms linking the organic
components.

3.6 Some linked knots

We show here (Fig. 14) some simple examples of catenanes that
can be considered as linked knots. Data are listed in Table 2.
cka is linked Solomon links but could also be considered as
woven linear chains. ckb is linked trefoil knots. ckc is linked
Borromean rings, but could also be considered as a three-way
weave of linear chains. ckd is linked David links but could also

Fig. 10 Simple triaxial weaves. The picture on the bottom right was
reproduced from ref. 61 with permission from Taylor and Francis Group
copyright, 2017.

Fig. 11 Left and center the two simplest patterns of chain link. wvx is used
in fences. Right the stockinette knit, wvz.

Table 2 Geometric data for 2-periodic polycatenanes. The entries under ‘link point’ are the nets with vertices at the link points. The entries for stick(s)
are the coordinates of corners linked to the corner with coordinates given in the ‘corner’ column to the left

Symbol Link points Trans Sym Corner Stick(s)

cme kgm 2 2 1 p622 0.583, 0.167, 0 0.58, 0, z; 0.42, 0.42, �z
0.583, 0, z

cmj sql 2 2 1 p422 0, 0.3, 0 �0.2, 0.5, z; 0.5, 0.8, z
0.5, 0.8, z

cmi sql 2 1 1 p%42m 0.3, 0, 0 0.65, 0.35, z
0.65, 0.35, z

cmk sql 1 2 1 pbmn 0.15, 0.15, z 0.85, 0.15, �z; 0.15, 0.85, z
cms kgm 2 1 1 p622 0.4, 0, 0 0.6, 0.2, z

0.6, 0.2, z
cmt htb 2 1 1 p%31m 0.61, 0.39, 0 0.32, 0, z

0.32, 0, z
cmu htb 1 2 1 p622 0.21, 0.79, z 0.58, 0.79, �z; �0.21, 0.58, �z
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be considered as three interwoven copies of the polycatenane
cme (Fig. 12).

4. Three-periodic structures
4.1 Description and generation of 3-periodic weavings

4.1.1 Fabric and chain-link weaving and line sets. We do
not attempt a formal definition of 3-periodic weaving. But we
suggest that a weaving of threads can be recognized by the fact
that the threads are interlacing in such a way that they cannot
be simultaneously pulled straight without either intersecting or
passing through others. We note that a broader definition of
‘‘weaving’’ has been used to describe 3-periodic patterns of
helices.64 None of those structures appear as weavings in this
paper. In the 2-periodic weavings of the last section, straighten-
ing the threads in fabric weaving leads to the threads intersecting
in a vertex-and-edge-transitive 4-c net, either the square lattice net
sql, or the kagome net kgm (Fig. 15). This gives a hint of how to
find regular 3-periodic weavings. Thread-weaving structures
derived from connected nets, say abc we designate abc-w. The
nets from which the regular fabric weavings are derived will have

edges forming straight lines in their symmetric embeddings. The
3-periodic invariant (all coordinates fixed by symmetry) nets
formed by intersecting straight lines are listed in Table 3.65

In the case of 2-periodic chain-link weaving, straightening
threads would require that they pass through each other
and form a simple non-intersecting layer pattern. For the
regular 3-periodic chain-link weavings the axes of the threads

Fig. 12 2-Periodic linked rings with symmetry related link points that form
the kgm (3.6.3.6) or sql (44) nets. cmk (‘European four-in-one chain mail’)
shown twice is the only one with an embedding with planar rings.

Fig. 13 2-Periodic linked rings with symmetry related link points that form
the htb (3.4.6.4) net. cmt has the Borromean property that no two rings are
directly linked.

Fig. 14 Examples of linked knots. cka is linked Solomon links. ckb is linked
trefoil knots. ckc is linked Borromean rings. ckd is linked David links and
can also be described as an interpenetration of three cme layers (each
shown with a different colour).
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will likewise form a 3-dimensional invariant non-intersecting
line pattern. These are summarized in Table 4 and illustrated in
Fig. 16.66 In most of the weavings we describe, the axes of the
threads form one of these patterns. The idea of 3-periodic
chain-link structures has been suggested earlier, and several
illustrated, but no geometric or other data given.67

In contrast to the 2-periodic case, it is found now that there
are many regular (transitivity 1 1 1) chain-link weavings, but we
have found only three regular fabric weavings.

4.1.2 Derivation of weavings. We briefly indicate how
chain-link weavings are derived from uninodal 4-c nets. Such
nets have six angles and the original node is split into 6
(Fig. 17). Two of these, related by symmetry at opposite angles,
can be selected to serve corners of a weaving with double
crossings. Later we adduce an example of a weaving (dia-w**)
with sextuple crossings. For isogonal (one corner) weavings the
original net must be uninodal and have symmetry at the vertex
of order at least 2. The RCSR lists 67 such nets, and one net can
provide more than one weaving, as we now demonstrate, so the

number of possibilities is large. Here we indicate how we
treated the most symmetric vertex- and edge-transitive nets.

The diamond net, dia, at full cubic symmetry (Fd%3m) has six
equivalent angles. To remove some of the degeneracy one must
go to trigonal or tetragonal symmetry. Trigonal will split into
groups of 3, so, to make a weaving with double crossings, the
new symmetry must be tetragonal and the maximal tetragonal
subgroup is I41/amd. This splits the 6 into 2 + 4 as shown in the
figure. Linking the 2 appropriately gives the regular weaving dia-w.
The only maximal subgroup of I41/amd that splits the group of 4 is
I4122, which produces two pairs (Fig. 17). Constructing weavings
from these pairs gives an enantiomorphic pair of weavings dia-w*.
By contrast the quartz net, qtz, has maximum site symmetry 222
and the angles are already split into three pairs. Each of these leads
to a regular weaving qtz-w, qtz-w*, and qtz-w**.

The sodalite net, sod, illustrates another feature. At full
symmetry (Im %3m) the site symmetry is %42m and the angles are
split into 4 + 2. Linking corners corresponding to the unique
pair give a regular polycatenane of linked squares, sod-y. Low-
ering the symmetry to Pn%3m splits the four into two pairs, each
of which gives the regular polycatenane sod-y* of linked hexa-
gons. These results show the close relation between weavings
and polycatenanes. However, a different maximal subgroup of
Im%3m, namely I432, again splits the group of four into two pairs
and these give enantiomorphs of a regular chiral weave sod-w.
Nets with planar 4-coordination (e.g. nbo) are not amenable to
this treatment but a regular fabric weave nbo-w has been found.
In contrast to the 2-periodic case, regular 3-periodic weaves
with triple crossings are possible. We find pcu-w, pcu-w*, crs-w,
acs-w, and lcy-w all derived from vertex- and edge-transitive 6-c
nets. Just one regular weaving with quadruple crossings has
been found – thp-w derived from the 8-c net thp.

4.1.3 Optimal embedding and girth. Knot theorists deter-
mine an ‘ideal’ embedding of a finite knot as that which uses
the shortest length of a rope of fixed width. The ‘energy’ that is
minimized is the ratio of rope length to diameter.68 A recent
paper, which gives a comprehensive review, shows how such a
procedure can be applied to periodic systems.69

Fig. 15 By pulling the interlacing threads straight in sql-w and kgm-w,
they will collide and intersect to form sql and kgm, respectively.

Table 3 The 3-periodic invariant intersecting line sets. pq indicates that
the lines run in p directions and q intersect at a point. The vertices are
2q-coordinated

Type pq Symbol Symmetry Coordinates

Tetragonal 4-way h101i 42 lvt I41/amd 0, 0, 0
Cubic 3-way h100i 32 nbo Im%3m 1/2, 0, 0

33 pcu Pm%3m 0, 0, 0
Cubic 4-way h111i 43 bcs Ia%3d 0, 0, 0

44 bcu Im%3m 0, 0, 0
Cubic 6-way h110i 63 hxg Pn%3m 0, 0, 0

63 crs Fd%3m 0, 0, 0
64 reo Pm%3m 1/2, 0, 0
66 fcu Fm%3m 0, 0, 0

Table 4 The 3-periodic invariant non-intersecting line sets (‘rod pack-
ings’). To generate the structure the symmetry operations act on the line in
the direction given in the first column passing through a point with the
coordinates given

Type Symbol Symmetry Coordinates

1-Way h001i 1 hcb P6mm 1/3, 2/3, 0
2 hxl P6mm 0, 0, 0
3 kgm P6mm 1/2, 0, 0
4 pcu P4mm 0, 0, 0

2-Way tetragonal h100i 5 W I41/amd 0, 0, 1/4
6 F P42/mmc 0, 0, 0

3-Way hexagonal h010i 7 L P6222 1/2, 0, 1/6
3-Way hexagonal h100i 8 D P6222 0, 1/2, 0
3-Way cubic h100i 9 P I4132 1/4, 0, 0

10 P* Pm%3n 1/2, 0, 0
4-Way cubic h111i 11 S I4132 1/3, 2/3, 0

12 G Ia%3d 0, 0, 0
13 O I432 1/3, 2/3, 0
14 S* Ia%3d 1/3, 2/3, 0
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In this work, we use a related procedure to find an optimal
embedding for piecewise linear weavings. For weavings of

threads containing just one kind of cylindrical stick we find
the width of the cylinder that brings a stick into contact with
one or more neighbors. The girth of a stick is then the ratio of
that width to the stick length. The optimal embedding is the
one that maximizes the girth of non-intersecting sticks.

In Fig. 18, notable is a broad maximum in each case. The
maxima are at:

sql� w girth ¼ 0:414 at 99:9
� ð

ffiffiffi

2
p
� 1; 2 tan�1 21=4Þ

kgm-w girth = 0.333 at 109.51 [1/3, cos�1(�1/3)]

We consider that the greater the maximum girth the more
amenable to synthesis will be a weaving composed of poly-
atomic threads. The broad maximum, which is characteristic of
the weavings we have studied, indicates that the angle at a
corner is not critical in determining a weaving. We have found
optimal embeddings for the regular 3-periodic weavings and
numerical data are reported below. For structures with transi-
tivity other than 1 1 1, the reported embedding is not optimal,
but adequate to specify the structure. However, we note that
such optimal embeddings could be found for all the structures
in this article.

4.2 3-Periodic fabric weaving

We have examined the nets of the invariant intersecting line set
(Table 3) as sources of fabric weaving. The two with 4-c vertices

Fig. 16 The invariant rod packings with the numbers and symbols of
Table 4.

Fig. 17 (a) Six symmetry-related points at a vertex of the diamond (dia)
net with symmetry Fd %3m. (b) With symmetry I41/amd the points are split
into sets of 2 and 4 symmetry-related points. (c) With symmetry I4122 the
points are further split into 3 groups of 2.

Fig. 18 Girth as a function of the angle at a corner (corner angle) between
two contiguous sticks for the regular 2-periodic weavings sql-w and kgm-w.
The crossings shown are for maximum girth.

Chem Soc Rev Review Article

Pu
bl

is
he

d 
on

 0
4 

M
ay

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

B
er

ke
le

y 
on

 6
/2

2/
20

18
 6

:5
6:

28
 P

M
. 

View Article Online

http://dx.doi.org/10.1039/C7CS00695K


This journal is©The Royal Society of Chemistry 2018 Chem. Soc. Rev., 2018, 47, 4642--4664 | 4653

(nbo and lvt) give fabric weaves with one kind of crossing point.
There are four of these nets with 6-c vertices. Two (pcu and crs)
yield fabric weaves with triple crossing points. Geometric data
for these weavings are given in Table 5.

nbo-w. The nbo net is the only one with full square symmetry
(4/mmm = D4h) at the vertex and the derived weave, nbo-w (Fig. 19),
and is the only regular (transitivity 1 1 1) fabric weave we have found
with two-way crossings. At the optimal embedding, girth = 0.619,
corner angle = 1391. The threads are 41 and 43 helices and threads
of one hand are directly linked only to threads of opposite hand.
Interwoven helical SBUs based on this pattern have been identified
in rod MOFs but in those materials the rods are linked by polytopic
linkers so the structure is not a weaving.65

cds-w. All other 4-c nets with embeddings in which all vertices
are in square coordination are at least edge 2-transitive so cannot
yield isonemal weavings. The simplest such net is cds and the

corresponding weaving cds-w (Fig. 20) which has symmetry
F41212 and transitivity 4 4 2 (each thread 2 2 1).

lvt-w. The lvt net, the other invariant 4-c net formed from
intersecting; it yields lvt-w (Fig. 21) but the best embedding we
can find has transitivity 1 2 1.

pcu-w. The 3-periodic analog of the simple regular 2-
periodic two-way weaving has zigzag threads running in three
perpendicular directions. This is the regular weaving pcu-w
(Fig. 22). Presumably there is a family of less-regular weavings
just as in the 2-periodic case – we have not explored this. In the
optimal embedding girth = 0.253, corner angle = 94.61.

crs-w. This (Fig. 23), like pcu-w, is a chiral regular weaving
with triple crossings and zigzag threads. It was suggested by
examination of nets formed from linked helical ladders.70 In the
optimal embedding girth = 0.277, corner angle = 108.31 (Table 6).

4.3 3-Periodic chain-link weaving

In contrast to the 2-periodic case, there are many different kinds
of chain-link weaving. Accordingly, for isonemal weavings we
generally restrict ourselves to regular ones.

4.3.1 Parallel helical threads. Here we describe some iso-
nemal and dinemal (two kinds of thread) with respectively

Table 5 Generation of regular chain-link weavings and catenanes. The
original nets are 4-c except for acs (6-c). For these last two we show first
the symmetry of the net, then that of the weaving

Parent Symmetry Angles

dia Fd%3m (6) —
I41/amd (4) + 2 dia-w zigzag
I4122 (2) + 2 + 2 dia-w* 41 and 43 helices

qtz P6222 2 + (2 + 2) qtz-w zigzag
(2) + 2 + (2) qtz-w* 32 helices
(2 + 2) + 2 qtz-w** 62 helices

sod Im%3m (4) + 2 Catenated 4-rings
Pn%3m (2) + 2 + 2 Catenated 6-rings
I432 (2) + 3 + 3 sod-w 31 and 32 helices

lcs Ia%3d (4) + 2 lcs-w 41 and 43 helices
I4132 (2) + 2 + 2 lcs-w* two sticks

lcv I4132 2 + (2 + 2) Catenated 3-rings
(2) + 2 + 2 lcv-w 31 or 32 helices

ana Ia%3d (1 + 1 + 2) + 2 Catenated 4-rings
(1 + 1) + 2 (+2) Catenated 6-rings

acs P63/mmc - P6322 acs-w 61 or 65 helices

Fig. 19 The nbo-w fabric weave. On the left is shown the structure of the
intersecting thread axes, below is shown one helical thread and the links
with red and blue threads.

Fig. 20 A weaving derived from the cds net shown on left.

Fig. 21 A fabric weave (right) derived from the lvt net (left).
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transitivity 1 1 1 and 2 2 2. For isonemal weavings only chiral
structures appear possible. Geometrical data are recorded in
Table 7.

dia-w*. This (Fig. 24) is one of two isonemal structures
derivable from the diamond (dia) net with either linked 41

or 43 helices. The optimal embedding has a simple exact
solution – the girth is 1/O6 = 0.408, the axial ratio c/a is 2O2
and the corner angle is cos�1(�1/3) = 109.51. The diamond net
is particularly amenable to forming interpenetrating pairs and
also shown is the structure dia-w*-c with two interpenetrating
weavings.

qtz-w*. This (Fig. 25) is the corresponding weaving of 31 or 32

helices. In the optimal embedding, girth = 0.310, c/a = 1.88,
corner angle = 78.51. Quartz nets of the same hand also readily
interpenetrate, and also shown in the figure is the interpene-
trating weaving.

qtz-w**. This (Fig. 26) is another of the three isonemal
weaving derived from the quartz net. Now the threads are 61

or 65 helices. At the optimal embedding girth = 0.450, c/a = 1.41,
corner angle = 129.61. Note that there are two separate coaxial

helices that are not directly linked. With reference to the figure
it may be seen that green and blue are coaxial, and that green is
linked to black, black to yellow, and yellow to blue. We
emphasize that there is just one kind of helix – indeed there
is just one helix per unit cell in the sense that all are related by
translations.

acs-w. This (Fig. 27) is a nice example of a weaving with a
triple crossing (see figure). At the optimal embedding girth =
0.315, c/a = 1.50, corner angle = 135.61. Now there are three
coaxial 61 or 65 helical threads that are not directly linked. Each
of the three is linked to two of the three in neighboring

Fig. 22 A fabric weave (top right) derived from the pcu net (top left). On
the bottom is a detail in the vicinity of a triple crossing link point.

Fig. 23 The crs net and the derived fabric weave with triple crossing link
points.

Table 6 Geometric data for 3-periodic fabric weaving. In the ‘stick’
column, that vertex is linked to the one in the ‘corner’ column. All have
transitivity 1 1 1 except lvt-w (1 2 1)

Symbol Symmetry Corner Stick

nbo-w Fd%3c 7/8, 7/8, �0.024 1/8, 0.774, 1/8
lvt-w I4122 0.5, 0.7, 0.68 0.2, 1.0, 0.83; 0.7, 0.5, 0.33
pcu-w I432 3/4, 0.413, 0.087 1/4, 0.087, 0.413
crs-w F4132 0.29, 0.46, 5/8 0.71, 0.54, 5/8

Table 7 Geometric data for 3-periodic chain-link weaving with parallel
threads. In the ‘stick’ column, that vertex is linked to the one in the ‘corner’
column. The transitivity is 1 1 1 or 2 2 2; in the latter case, there are two
rows per structure

Symbol Symmetry Corner Stick

dia-w* I4122 0.25, 0.25, 0 0.25, �0.75, 1/4
dia-w*-c P4222 0.0, 0.3, 0.5 0.7, 1.0, 0.0
qtz-w* P6222 0.25, 1 � x, 1/3 2x � 1, x, 2/3
qtz-w*-c P6222 0.44, 0.88, 0 0.44, 1.16, 1/3
qtz-w** P6222 0.764, 0, 0 0.764, 0.764, 1/3
acs-w P6322 1, �0.505, 1/4 1.01, 1.505, 3/4
unc-w P4122 0.44, 0, 3/4 0, 0.56, 1/2

0, 0.22, 0 0, 0.78, 1/2
und-w I41/amd 3/4, 0.4, 0 3/4, 0.1, 1/2

1/4, 0.28, 1/2 0.47, 1/2, 1/4
unh-w P6122 0.48, 0.96, 0.25 0.48, 0.52, 0.92

0.38, 0.76, 0.25 0.62, 0.25, 0.75
ung-w R%3c 0, 0.47, 1/4 0.14, 1/3, 7/12

0, 0.39, 1/4 0, 0.61, 3/4
uni-w P6122 0.46, 0, 0 0.46, 0.46, 1/6

0.32, 0, 0 0.68, 0, 1/2
unj-w P6122 0.32, 0.16, 1/12 0.84, 0.16, 5/12

0.31, 0.62, 1/4 0.62, 0.31, 1/12

Fig. 24 Left: A chain-link weaving of tetragonal helices derived from the
diamond (dia) net. Right: Two such interpenetrating weavings.
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columns so the whole assembly forms just one weaving – as we
know it must – as the net of link points (acs) is a connected net.
Again, there is just one helix per unit cell.

We also show (Fig. 28) some dinemal weaving of parallel
helices. The transitivity in each case is 2 2 2 – the minimum for
a dinemal weaving. Importantly, from the design point of view,
in each case there is just one kind of link point. Zigzag threads
can link trigonal helices of opposite (unc-w) or the same (und-w)
hands. Likewise zigzags can link tetragonal helices of opposite
(unh-w) or the same (ung-w) hands. It should be clear from the
figure that zigzags can only link hexagonal helices of the same

hand (uni-w). Finally in the figure is a linkage of trigonal and
hexagonal helices (unj-w). In this chiral pattern 31 and 61 (or 32

and 65) helices are linked.
4.3.2 Chain-linked zigzag threads in layers. qtz-w and dia-w.

Here we recognize two special structures with threads whose
axes lie in parallel layers. They are derived from the quartz (qtz)
and diamond (dia) nets by splitting the 4-c vertices as describer
earlier (Section 4.1.2). dia-w is notable for the fact that the
threads cross at right angles making them particularly favorable
for designed synthesis of 3-periodic weaving with zigzag threads
in crystals and indeed the structure of the 3-periodic weavings
(COF-50571 and COF-11272) reported to date are based on dia-w
(Fig. 29). At the optimal embedding for dia-w girth = 0.294,
c/a = 0.52, corner angle = 95.41. For qtz-w girth = 0.293, c/a = 0.40,
corner angle = 104.51. Data (symmetry, coordinates) are to be
found in Table 8.

The structures are illustrated in Fig. 30. dia-w, is particularly
amenable into forming two interpenetrating structures dia-w-c.
The symmetry goes from I41/amd to P42/nnm. In both cases four

Fig. 25 Left: A chain-link weaving of trigonal helices derived from the
quartz (qtz) net. Right: Two such interpenetrating weavings.

Fig. 26 Left: A chain-link weaving of hexagonal helices derived from the
quartz (qtz) net. The pattern on the right shows how the helices are linked.
Helices are linked to those of neighboring colours; for example, blue is
linked to red and yellow. Coaxial helices have colours on a diameter of the
hexagon; for example, blue and green.

Fig. 27 Left: A chain-link weaving derived from the 6-c acs net. As shown
in the middle, each column is actually three coaxial helices. Right shows
the vicinity of a triple crossing link point. Note that colours do not have the
same significance in the different panels.

Fig. 28 A series of weavings of two kinds of parallel threads and transi-
tivity 2 2 2. Top four: Zigzag + helix. Bottom two: Two helices.
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link points per primitive cell. Of interest with respect to real
materials is the symmetry of the zigzag threads, which are replaced
by 4-fold helices. Then one gets a structure with interwoven 41 and
43 helices as shown in Fig. 31. Finally, interpenetrating two such
structures gives an idealization of the actual structure of COF-505.
The symmetries are now I%42d and P%4n2 (interpenetrated pair), and
COF-112 has the non-interpenetrated structure. COF-505 has the
interpenetrated structure.

We show here also structures derived from the tetragonal
net pts, the simplest structure with both planar and tetrahedral
4-c vertices. Splitting the tetrahedral vertices in chain-link
fashion results in linked rods running normal to the tetragonal
axis. Splitting also the planar vertices in fabric-weave fashion
produces a weaving of threads (Fig. 31). As shown in the figure,
the structure can be considered a weaving (interpenetration) of
four dia-w weaves.

4.3.3 Cubic chain-link weaves. Here we describe regular
isonemal chain-link weavings with thread axes running in three

directions (cubic h100i) or four directions (cubic h111i). For the
most symmetrical, the pattern of axes is one of the invariant
ones illustrated in Fig. 16.

sod-w. This (Fig. 32) structure is formed by 31 (or 32) helices
with axes in the O pattern. Twelve threads combine to weave the
cage (tile) shown. In the optimal embedding girth = 0.152,
corner angle = 93.61.

lcs-w. In this structure (Fig. 33), threads are 41 and 43 helices
with axes forming the P* pattern with a doubled cell to allow
ordering of the 41 and 43 helices as shown in the figure. As in
nbo-w, direct links are only between helices of opposite hand.
In the optimal embedding girth = 0.429, corner angle = 108.21.

lcv-w and lcv-w* (Fig. 34). These are more chiral structures
with two degrees of freedom. In lcv-w the corners in x, x + 1/4,

Fig. 29 Left: Two views of the dia-w chain-link weave derived from the
diamond (dia) net. Right: Two views of the qtz-w chain-link weave derived
from the quartz (qtz) net.

Table 8 Geometric data for 3-periodic chain-link weaving with non-
parallel threads. In the ‘stick’ column, that vertex is linked to the one in the
‘corner’ column. Under ‘thread’ is the shape (21 is zigzag) and the symbol
for the packing (Fig. 16). All have transitivity 1 1 1 except pts-w (2 1 1) and
hbo-w (1 2 1)

Symbol Symmetry Corner Stick Thread

dia-w I41/amd 0, 3/4, 0.434 0, 1/4, 0.434 21 W
dia-w-c P42/nnm 1/4, 3/4, 0.85 �1/4, 1/4, 0.15 21 F
qtz-w P6222 1/2, 1/2, 0.008 0, 1/2, 0.992 21 L
pts-w P4122 0, 0, 0.17 �1/2, 0.12, 1/2 21 F
sod-w I432 0.069, 1/4, 0.431 �0.069, 0.569, 3/4 31 O
lcs-w Ia%3d 3/4, 0.488, 0 3/4, 0.512, �1/4 41,3 P*
lcv-w I4132 0.458, 0.708, 5/8 0.792, 5/8, 0.542 31 S
lcv-w* I4132 0.075, 0, 1/4 1/4, 0.175, 0 31 S
lcy-w P4132 3/8, 1.539, 0.211 0.461, 0.711, 1/8 31 S
lcy-w* P4132 7/8, �0.008, 0.742 3/8, 0.508, 0.242 21 P
thp-w I%43d 0.80, 0.18, 0.03 0.32, 0.03, 0.20 31 G
dia-w** F4132 1/4, 1/4, 0.63 0.62, 0, 0 41 P*
hbo-w Pm%3n 0.62, 0.29, 0.83 0.32, 0.29, 1.17 —

Fig. 30 Variation on the dia-w weaving of Fig. 28. (a) Two interpenetrating
weavings. (b) The basic weaving with the zigzags replaced by helices.
(c) Two interpenetrating copies of the structure in (b). Red and blue helices
are linked together by the yellow and green ones. This is the underlying
structure of COF-505.71

Fig. 31 Decomposing the pts net into threads. Threads of one color
constitute a dia-w weaving.
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1/8 and the threads are 31 (or 32) helices in the S pattern. In lcv-w*
the corners in x, 0, 1/4 and the threads are 41 (or 43) helices in

the P pattern. This latter weaving accommodates only narrower
threads. In the optimal embedding for lcv-w girth = 0.142, corner
angle = 124.61; for lcv-w* girth = 0.082, corner angle = 147.91.

lcy-w. lcy (Fig. 35) is a 6-c net, so a triple-crossing link point
(shown in the figure) is necessary. Again, the threads are 31

(or 32) helices in the S pattern. In the optimal embedding the
girth = 0.252, corner angle = 108.31.

lcy-w*. The corners of lcy-w (Fig. 36) can be connected
differently to obtain a new weaving of zigzag threads. The threads
run along h100i and their axes are arranged in a lower-symmetry
version of the P packing. In the optimal embedding girth = 0.104,
corner angle = 68.81.

pcu-w*. This structure (Fig. 37) is another weaving with triple
crossings and of interest in several ways. It is a chain-link weaving
with link points at the vertices of a pcu net. – contrast with pcu-w,
which is a triple-crossing fabric weave with the same pattern of link
points. The threads are 31 (or 32) helices with axes forming the
same pattern as in sod-w. In fact, all three weaves (pcu-w, pcu-w*
and sod-w) have the same symmetry (I432) and corners in the same
Wyckoff set (x, x + 1/2, 1/4), The difference between the three
weavings is that the stick corners are different pairs of coordinates.

For the optimal embedding of pcu-w* girth = 0.077, corner
angle = 74.21.

thp-w. thp (Fig. 38) is an 8-c net so the derived weaving has a
quadruple-crossing link point as shown in the figure. The full
structure is hard to depict clearly and we just show the
proximity of a link point and the thread packing. The threads

Fig. 32 Left: sod-w. Parallel threads (trigonal helices) have the same
colour. Twelve threads combine to make the space-filling cage shown.

Fig. 33 Aspects of the lcs-w chain-link weaving of tetragonal helices. Directly
linked helices are of opposite hand. Middle: A close-up of the pattern of linking.
Right: The pattern of helix axes. Red and blue rods correspond to helices of
opposite hand and form a superstructure of the P* packing (Fig. 16).

Fig. 34 The lcv-w and lcv-w* weavings corresponding to a tile of the
structure, shown on the lower right. Threads of the same color are parallel.
In lcv-w they run along h111i and in lcv-w* they run along h100i.

Fig. 35 lcy-w. Chain-link weaving derived from the 6-c net lcv. Detail in
the vicinity of a triple-crossing link point is shown on the right.

Fig. 36 lcy-w*. A second chain-link weaving derived from lcv compared
with lcv-w (Fig. 34).
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are zigzags running along h111i and the pattern of their axes is
a supercell (2 � 2 � 2) of the G packing in a lower-symmetry
arrangement, as shown in the figure. For the optimal embedding,
girth = 0.111, corner angle = 86.41.

dia-w**. This weaving (Fig. 39) is shown as an example of a
weaving with sextuple crossings. The six symmetry-related
points around a vertex in the dia (diamond) net are still related
by symmetry in F4132 and can be linked to make a weaving as

shown in the figure. There it can be seen that each edge of the
parent dia net is replaced by three sticks. The threads are 41

(or 43) helices with axes forming the P* pattern with a doubled
cell as in lcs-w, but now all helices of the same hand. As might
be expected for a structure with a high number of crossings, the
weaving is only possible with narrow threads. At the optimal
embedding girth = 0.051, corner angle = 94.21.

hbo-w. This (Fig. 40) is an example of an isonemal weaving
with crankshaft threads. Though not regular (the transitivity is
1 2 1) it should be a credible candidate for designed synthesis.

4.4 Polycatenanes

Polycatenanes (linked rings) are readily derived from 4-c nets
and we use a symbol abc-y for a polycatenane thus obtained
from abc. There are many possibilities, so with one exception,
we limit ourselves to regular structures. Geometrical data are in
Table 9.

Linked triangles. The only regular structure formed from a
4-c net is lcy-y (Fig. 41). However, there is at least one other
with transitivity 1 1 1. This is obtained by taking the regular
finite polycatenane formed from four triangles (124, Fig. 6).
The twelve vertices can be linked as in face-centered cubic to
produce the polycatenane with symbol lkv (Fig. 41). However,
we do not consider it as a new regular polycatenane as it may
also be considered as four interwoven lcy-y polycatenanes.

Linked quadrangles. We find two regular structures sod-y
and ana-y (Fig. 42). Note that although the quadrangles in ana-y
are not planar they are regular with equal (symmetry-related)
edges and angles.

Fig. 37 The pcu-w* weaving. Parallel threads have the same colour. On
the left are shown 12 helices enclosing the yellow sphere at the center –
compare sod-w (Fig. 31). On the right are shown three threads in the
vicinity of a link point (black sphere).

Fig. 38 thp-w. Left: A fragment of a chain-link weaving derived from the
8-c net thp. Right: The pattern of the helical thread axes.

Fig. 39 Two aspects of the dia-w** weaving. Left: Showing how corners
at two crossing points are linked by three sticks. Yellow balls are at the
vertices of the parent dia net. Right: Close-up of one sextuple crossing at
the optimal embedding. Threads of the same color are parallel.

Fig. 40 hbo-w. A chain-link weaving of crankshaft threads derived from
the 4-c net hbo with transitivity 1 2 1. Twelve threads combine to form the
cavity centered by the yellow ball.

Table 9 Geometric data for 3-periodic polycatenanes. In the ‘stick’
column, that vertex is linked to the one in the ‘corner’ column. All have
transitivity 1 1 1 except lka (2 1 1)

Symbol Symmetry Corner Stick

lcv-y I4132 0.44, 0.19, 7/8 0.81, 3/8, 1.06
lkv F432 0.3, 0, 0.7 0, 0.3, 1.3
sod-y Im%3m 0.19, 0, 1/2 1/2, 0, 0.19
ana-y Ia%3d 0.89, 0.42, 0.81 0.83, 0.14, 0.94
lka Fm%3c 1/2, 0.2, 0 0.35, 1/2, 0
sod-y* Pn%3m 0.31, 1/2, 0.69 0, 0.19, 0.69
ana-y* Ia%3d 0.17, 0.30, 0.89 0.20, 0.39, 1.17
pcu-y Pm%3n 0.1, 0.4, 3/4 0.9, 0.4, 3/4
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We also show lka (Fig. 43), which is less regular (transitivity
2 1 1). This is made by linking Borromean sets of three rings
(Fig. 4) into a cubic network. The structure can be considered to
be interpenetrating 1-periodic chains with the Borromean
property that no two chains are directly linked.

Linked hexagons. There are three regular structures (Fig. 44)
sod-y*, ana-y*, and lcs-y. The skew (‘chair’) hexagons in ana-y* and
lcs-y are regular (all edges and all angles related by symmetry).

Linked quadrangles with triple crossings. We have found
one regular polycatenane derived from a 6-c net. This is pcu-y
(Fig. 45) in which each quadrangle is linked to 8 others.

4.5 Linked polyhedral

These structures (Fig. 46) are beyond our restriction to those
made up solely of 2-c corners and sticks. However, one might
argue that they are the true 3-periodic analogs of chainmail.

Fig. 41 Left: The polycatenane lcv-y. Linked triangles derived from the
4-c net lcv. Right: A fragment of a structure with transitivity 1 1 1 with each
triangle linked to six others as shown for the black triangle. This structure is
four interpenetrating lcv-y polycatenanes.

Fig. 42 Regular polycatenanes of linked quadrangles.

Fig. 43 A polycatenane with transitivity 2 1 1 formed by linking Borro-
mean rings into a cubic framework.

Fig. 44 Three regular polycatenanes formed by linking hexagons into a
3-periodic framework.

Fig. 45 A regular polycatenane constructed by interlocking quadrangles
in a 6-c net.

Fig. 46 Simple examples of 3-periodic ‘chainmail’ formed by linking
polyhedra into 3-periodic frameworks.
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crs-y (linked tetrahedra) and bcu-y (linked cubes) are the
only ones with one kind of edge and one kind of vertex. acs-y has
two kinds of stick (edge). bor-y is derived from the boracite net
(bor) and can be considered as linked adamantane units with 2-c
and 3-c vertices. We include it as it forms the basis for a rare
example of a crystal structure based on 3-periodic chainmail.73

4.6 Mixed threads and rings

We show here some examples of structures with interwoven
threads and rings (Fig. 47). They all have the minimal possible
transitivity (2 2 2) and, as in earlier examples of dinemal
weavings, one kind of link point. Symbols are abc-wy for
structures derived from abc.

In addition, unw-wy is formed from triangles and 31 (or 32)
helices. The helix axes are in the O rod packing as in sod-w
but now linked with triangles as shown in the figure. Finally,
unx-wy has again triangles in four orientations (parallel to
h111i) but now the threads are 41 (or 43) helices. The structure
is hard to illustrate but can be appreciated by the observation
that the yellow ball in the figure is part of a dia (diamond) array
of such balls (Table 10).

5. Realization of synthetic
targets – present and future
5.1 Synthetic strategy and design of polycatenated and woven
structures by using metal complexes as templates

The designed synthesis of 0-periodic molecular knots and catenanes
is well documented in the chemical literature.39–48,50,52,74 The first
proof-of-concept work in the field was reported in 1960 with the
successful synthesis of a [2]catenane by statistical interlocking of
molecular macrocycles.75 In 1964, the first directed synthesis of a
catenane was demonstrated by introducing a covalent template to
put the two molecular components in place.76 Upon subsequent
cleavage of this covalent template the catenated molecule was
obtained in higher yields as compared to the previously reported
statistical approach However, the synthesis still required many
steps and thus the overall yield was still low. The breakthrough for
the field took place in 1983 when a metal-template approach was
disclosed to construct higher-order molecular architectures.77

This strategy has several advantages with regard to the designed
synthesis of catenated architectures: (1) high overall yield, (2)
simple building blocks (can be simply functionalized ligands),
and (3) specific orientation of the ligands as a result of metal
coordination to the template allowing for efficient formation of
the entanglement. The ability of synthetic chemists to construct
increasingly complex molecular structures has since then progressed
remarkably and a plethora of highly sophisticated 0-periodic
structures has been achieved as reviewed in Sections 1 and 2.

On a conceptual level, we view the synthesis of extended
2- and 3-periodic polycatenanes and weaving structures as an
extension to their discrete molecular counterparts. We believe
that a similar template strategy in conjunction with the design
principles of Reticular Synthesis, which describes the reticula-
tion of molecular building blocks to construct extended crystal-
line frameworks, can be employed to target such polycatenated
and woven structures. Here again we start from a molecular
metal complex with functionalized organic ligands, but instead
of forming discrete molecules by non-propagating ring closing
reactions, they are linked to form 2- and 3-periodic framework
structures through the formation of strong, directional bonds.
The directionality of the bonds is crucial as, in conjunction
with the adjustment of angles and metrics of the molecular

Fig. 47 Examples of interwoven combinations of threads and rings with
transitivity 2 2 2. Those with parallel threads and parallel rings are: npo-wy
triangles and zigzags; crb-wy squares and zigzags; afw-wy triangles and 31

(or 32) helices; gis-wy squares and 41 and 43 helices.

Table 10 Geometric data for 3-periodic thread plus ring weavings with
transitivity 2 2 2. The vertex in the ‘stick’ column is linked to the one in the
‘corner’ column

Symbol Symmetry Corner Stick

npo-wy P65/mmc 0.47, 0.53, 1/4 0, 0.53, 1/4
0.41, 0.82, 1/4 0.59, 1.18, 3/4

crb-wy I4/mmm 0.72, 0.28, 1/2 0.72, 0.72, 1/2
0.17, 0.17, 0 0.33, 0.33, 1/2

afw-wy R32 0.125, 0, 0 0.542, 0.208, 1/3
1/3, 0.6, 1/3 0.4, 0.067, 1/3

gis-wy I41/amd 0.1, 0.35, 7/8 0.4, 0.35, 5/8
0.1, 0.45, 7/8 0.2, 0.05, 7/8

unw-wy I432 1/4, 0.19, 0.31 0.19, 1/4, 0.61
1/4, 0.08, 0.42 0.08, 0.42, 1/4

unx-wy I4132 0.125, 0, 1/4 1/4, 0.125, 0
1/8, 0.06, 0.19 3/8, 0.06, 0.31
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constituents, it allows for the resulting woven structures to be
designed with regard to their underlying weaving.

A first example of a woven extended structure was reported as
COF-505,71 a covalent organic dia-w framework (COF). Analogous
to the aforementioned synthesis of the first molecular catenane,
its synthesis relies on a copper(I)-bisphenanthroline complex as
the template. Instead of a terminating ring closing reaction in
the molecular structure, the complex is reticulated into an
extended framework structure of dia net through reversible
imine bond formation using benzidine as a linker (Scheme 1).
In both scenarios the metal template needs to be removed post-
synthetically to yield the 0-periodic Hopf link [2]catenane and
3-periodic woven dia-w structure, respectively.

The same design strategy for constructing woven structures
can be applied to other metal complexes that are stable under
the solvothermal conditions used in COF synthesis. Another
woven framework, COF-112, has also been successfully synthe-
sized (Scheme 2) by linking the amine-functionalized cobalt
bis(diiminopyridine) complex, [Co(NH2-DIP)2]. The tetrahedral
complex has a dihedral angle (between the two pyridine rings)
of 801, close to the angle of 901 of a dia net in its highest
symmetry embedding. In addition, tert-butyloxycarbonyl (Boc)
groups were utilized to protect the primary amines in the
starting materials. This increases the solubility of the starting
reagents as well as intermediates, allowing for the maximum

degree of error correction of the intermediates during the
dynamic bond formation. This procedure yields a well-defined
extended COF framework that consists of interlacing 1D zigzag
polyimine chains.

5.2 Future prospects

It is no coincidence that the first examples of woven COFs
features a dia-w weaving. The synthetic route toward the
structure relies on the initial formation of a dia framework,
which is only subsequently demetalated to yield the derived
woven framework. Since the diamond net is the default struc-
ture for tetrahedral nets it is the most likely to form in the
context of reticular synthesis. The advantage of using COFs to
target woven or polycatenated extended structures is however
that the directional covalent bonds and the rigid organic
building blocks allow for the adjustment of angles and there-
fore for targeting of topologies other than the default nets. As
such, these angles must not be understood as a strict necessity
for the formation of the desired topologies but more as a
guideline for their design. In a regular weaving or polycatenane,
the nature of the thread or ring depends on the geometry of three
contiguous sticks expressed as the corner angle between neighboring
sticks and the dihedral angle between next-neighbor sticks. For
example, if the corner angle is the tetrahedral angle, 109.51, the
following geometries result for different dihedral angles: 301, skew

Scheme 1 Synthetic routes for molecular [2]catenane and extended woven COF-505 by employing the copper(I)-bisphenanthroline core as a template.
Threads in blue and orange are chemically identical; colors are used to highlight the threads with different propagation directions.
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(‘chair’) hexagon; 601 tetragonal helix; 109.51, trigonal helix, 1801,
zigzag; a hexagonal helix is not possible.

In Table 11 we have compiled a concise list of regular woven
and polycatenated nets with optimal girth greater than 0.25. We
also give the corner angle (f) and crossing angle (c) derived
from their optimal embeddings. The crossing angle, with one

exception, is 901 for double crossings. Structures with triple
crossings should be accessible using a templating complex with
32 (D3) symmetry. pcu-w and crs-w with zigzag threads should
be prime targets. We expect that the list, alongside the general
design considerations outlined above, will serve as a guideline
for the targeted synthesis of a large variety of woven and
polycatenated frameworks of different structure types. Equally
important is the fact that knowing a small group of expected
structures can be of crucial help in both predicting and
determining the crystal structures.78

Finally, we remark that we make no claim to completeness
in our identification of regular structures. We have noted that,
for example, pcu-w, sod-w, and pcu-w* all have vertices in the
same Wyckoff set (24 g of I432) but with sticks defined by
different pairs of vertices. It is likely that other regular structures,
but with smaller girth, could be found from other combinations.
But we do feel that we have discovered the majority of the high-
girth weavings that are of most interest in chemistry.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Y. L. acknowledges funding from the Philomathia Graduate
Fellowship in the Environmental Sciences.

References

1 Knot Atlas, http://katlas.org/wiki/Main_Page.
2 C. C. Adams, The Knot Book, American Mathematical Soc.,

1994.
3 H. W. Gibson, M. C. Bheda and P. T. Engen, Prog. Polym.

Sci., 1994, 19, 843–945.
4 Z. Niu and H. W. Gibson, Chem. Rev., 2009, 109, 6024–6046.
5 C. J. Bruns and J. F. Stoddart, The nature of the mechanical

bond: from molecules to machines, John Wiley & Sons, 2016.
6 C. O. Dietrich-Buchecker and J.-P. Sauvage, Chem. Rev.,

1987, 87, 795–810.
7 R. S. Forgan, J. P. Sauvage and J. F. Stoddart, Chem. Rev.,

2011, 111, 5434–5464.
8 G. Gil-Ramı́rez, D. A. Leigh and A. J. Stephens, Angew.

Chem., Int. Ed., 2015, 54, 6110–6150.
9 O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae,

M. Eddaoudi and J. Kim, Nature, 2003, 423, 705–714.
10 H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi,

Science, 2010, 9, 1230444.
11 C. S. Diercks and O. M. Yaghi, Science, 2017, 355, eaal1585.
12 M. O’Keeffe, Acta Crystallogr., Sect. A: Found. Crystallogr.,

2008, 64, 425–429.
13 M. O’Keeffe, M. A. Peskov, S. J. Ramsden and O. M. Yaghi,

Acc. Chem. Res., 2008, 41, 1782–1789.
14 M. Li, D. Li, M. O’Keeffe and O. M. Yaghi, Chem. Rev., 2014,

114, 1343–1370.

Scheme 2 Synthetic route for the crystalline woven COF-112 by employing
Co(II) ions as a template.

Table 11 The weavings with largest girth at optimal embedding. Under
‘type’, F indicates fabric weave and C indicates chain-link weave; the
following numbers indicate a double (2) or triple (3) link

Symbol Girth Thread Type f [1] c [1]

nbo-w 0.619 41 and 43 F2 139.0 90
qtz-w** 0.450 61 or 65 C2 129.6 73.8
lcs-w 0.429 41 and 43 C2 108.2 90
dia-w* 0.408 41 or 43 C2 109.5 90
acs-w 0.315 61 or 65 C3 135.6 —
qtz-w* 0.310 31 or 32 C2 78.5 90
dia-w 0.294 21 C2 95.4 90
crs-w 0.277 21 F3 113.0 —
pcu-w 0.253 21 F3 94.6 —
lcy-w 0.252 31 or 32 C3 108.3 —

Chem Soc Rev Review Article

Pu
bl

is
he

d 
on

 0
4 

M
ay

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

B
er

ke
le

y 
on

 6
/2

2/
20

18
 6

:5
6:

28
 P

M
. 

View Article Online

http://katlas.org/wiki/Main_Page
http://dx.doi.org/10.1039/C7CS00695K


This journal is©The Royal Society of Chemistry 2018 Chem. Soc. Rev., 2018, 47, 4642--4664 | 4663

15 O. Delgado Friedrichs, M. O’Keeffe and O. M. Yaghi,
Acta Crystallogr., Sect. A: Found. Crystallogr., 2003, 59,
22–27.

16 O. Delgado-Friedrichs and M. O’Keeffe, Acta Crystallogr.,
Sect. A: Found. Crystallogr., 2003, 59, 351–360.
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M. Mayor, Nat. Commun., 2017, 8, 14442.

57 P. M. Van Calcar, M. M. Olmstead and A. L. Balch, J. Chem.
Soc., Chem. Commun., 1995, 1773–1774.

58 Y.-H. Li, C.-Y. Su, A. M. Goforth, K. D. Shimizu, K. D. Gray,
M. D. Smith and H.-C. zur Loye, Chem. Commun., 2003,
1630–1631.

59 U. Lewandowska, W. Zajaczkowski, S. Corra, J. Tanabe,
R. Borrmann, E. M. Benetti, S. Stappert, K. Watanabe,
N. A. K. Ochs, R. Schaeublin, C. Li, E. Yashima, W. Pisula,
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