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Foreword

Our knowledge of how atoms are linked in space to make molecules and how
such molecules react has now reached a sophisticated level leading not only to
the formation of useful crystalline materials but also in deciphering important
disciplines (e.g. chemical biology, materials chemistry), where chemistry plays
an indispensable role in understanding matter. In contrast, the science of making
and studying extended chemical structures has remained relatively untouched
by the tremendous progress being made in molecular chemistry. This is because
solid-state compounds are usually made at high temperatures where the struc-
tures of organics and metal complexes do not survive and where their molec-
ular reactivity is not retained. Although this has led to useful inorganic solids
being made and studied, the need for translating organic and inorganic complex
chemistry with all its subtleties and intricacies into the realm of solid state con-
tinued until the end of the twentieth century. At that time, it became clear that
the successful synthesis and crystallization of metal-organic frameworks (MOFs)
and later covalent organic frameworks (COFs) constituted an important step in
developing strong covalent bond and metal–ligand bond chemistry beyond the
molecular state. MOFs of organic carboxylates linked to multi-metallic clusters
were shown to be architecturally robust and proven to have permanent porosity.
Both are critical factors for carrying out precision organic reactions and metal
complexations within solid-state structures. With COFs, their successful synthe-
sis and crystallization ushered in a new era for they extended organic chemistry
beyond molecules (0D) and polymers (1D) to layered (2D) and framework (3D)
structures. The fact that both MOFs and COFs are made under mild conditions,
which preserve the structure and reactivity of their building blocks, and that their
building blocks are made entirely from strong bonds and are also linked to each
other by strong bonds to make crystals of porous frameworks, gave rise to a
new thinking in chemistry. By knowing the geometry of the building blocks it
became possible to design specific MOF and COF structures, and by knowing
the conditions under which such structures formed it became possible to expand
their metrics and functionalize their pores without affecting their crystallinity or
underlying topology. This is completely new in solid-state chemistry. On the fun-
damental level, MOFs and COFs represent whole new classes of materials and the
intellectual aspects of their chemistry provided a new thinking for the practicing
scientist. One might go as far as to say that this new chemistry, termed reticular



xx Foreword

chemistry, gave credence to the notion of materials on demand. At present, retic-
ular chemistry is being practiced and researched in over a thousand laboratories
around the world in academia, industry, and government. The utility of reticu-
lar materials in many fields such as gas adsorption, water harvesting, and energy
storage, to mention a few, makes this new field all the more interesting to explore
and teach since it covers aspects from basic science to real world applications.
Accordingly, we have endeavored in this book to provide an introductory entry
into this vast field. The book is divided roughly into four parts, which are seam-
lessly joined in their presentation. The first part (Chapters 1–6) focuses on MOF
chemistry and presents their synthesis, building blocks, characterization, struc-
tures, and porosity. The second part (Chapters 7–11) presents COF chemistry in
a sequence similar to that of MOFs but with emphasis on the organic chemistry
used to produce their linkers and linkages. The third part (Chapters 12–17) is
dedicated to the applications of MOFs with some mention of those pertaining to
COFs. Here, we have endeavored to give a basic description of the physical prin-
ciples for each application and how reticular materials are deployed. The fourth
part (Chapters 18–21) is what we have referred to as special topics that are related
to reticular chemistry thinking and analysis. The book is written to allow instruc-
tors to use each part independently from the others, and for most chapters, they
can also be taught out of sequence or even separately. We hope the students and
instructors will appreciate through this textbook that reticular chemistry as a field
of study is rooted in organic, inorganic, and physical chemistry, and that it has
merged these traditional disciplines into one to produce useful crystalline mate-
rials without losing the precision of molecular chemistry. The book is unique in
its coverage of the basic science leading to the synthesis, structure, and proper-
ties as well as to the applied science of using these materials in addressing societal
challenges. Reticular chemistry extends molecular chemistry and its precision in
making and breaking bonds to solid-state framework structures being linked by
strong bonds. It is now realistic to think in the following way: what the atom is
to the molecule, the molecule is to the framework. The molecule fixes the atom
in a specific orientation and spatial arrangement, while the framework fixes the
molecule into specific orientation and spatial arrangement; except that the frame-
work also encompasses space within which matter can be further manipulated
and controlled. It is a new field that combines the beauty of chemical structures,
chemistry of building units and their frameworks, and relevance to societal chal-
lenges. We have sought to communicate these aspects in our book to provide a
rich and stimulating arena for learning.

Berkeley
March 2018

Markus J. Kalmutzki
Christian S. Diercks
Omar M. Yaghi
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Introduction

Reticular Chemistry is concerned with making and breaking bonds in molecules
and how this can be done in a controlled fashion. When a new molecule is discov-
ered, the need and desire to build it up from simple starting materials using logical
means becomes a central objective. Thus, chemists first and foremost are archi-
tects and builders: generally, a “blueprint” for a target molecule is designed and a
reaction pathway is determined for making it. Often, this blueprint also includes a
strategy for achieving the desired molecular geometry and spatial arrangement of
atoms, as these dramatically impact the properties of molecules. This sequence of
operations is so well developed in organic chemistry that virtually any reasonable
target can be designed and made with high precision. The deliberate chemical
synthesis approach thus employed is less developed for metal complexes because
a metal ion can adopt different geometries and coordination numbers thereby
introducing uncertainty into the outcome of the synthesis. Furthermore, unlike
organic molecules, where multiple chemical reactions can be carried out to func-
tionalize them, metal complexes are modified largely by substitution–addition
reactions. This is because of the limitations imposed by the chemical stability
of metal complexes. Thus, the step-by-step approach to the synthesis of organic
compounds is severely limited in the synthesis of metal complexes, and this adds
a significant component of trial-and-error to metal ion chemistry. It should be
noted that the uncertainty in metal-complex chemistry is sometimes obviated by
sophisticated design of multi-dentate organic ligands, whereby a metal ion can be
locked into a specific geometry and coordination mode. It remains, however, that
although immense diversity can be created, the ability to control the geometry
around the metal ion and spatial arrangement of ligands is an ongoing challenge.

A new level of precision and control in chemical synthesis is achieved when
linking molecules together to make larger discrete and extended structures. There
are two basic aspects to consider in linking molecules: the first pertains to the
type of interactions used in such linkages and the directionality they impart to the
formation of the resulting structure, and the second is concerned with the geom-
etry of the molecular building units and how their metric characteristics such as
length, size, and angles guide the synthesis to a specific structure. These aspects
are at the core of reticular chemistry, which is concerned with linking molecular
building units by strong bonds to make crystalline large and extended structures.

Reticular chemistry started by linking metal ions through strong bonds
using charged organic linkers such as carboxylates leading to metal-organic
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frameworks (MOFs) and related materials. These frameworks in effect expanded
the scope of inorganic complex chemistry to include extended structures in
which the building units are fixed in precise geometrical and spatial arrange-
ments. Another development was to extend organic chemistry beyond molecules
and polymers by using reticular chemistry to link organic building blocks into
crystalline two- and three-dimensional covalent organic frameworks (COFs).

The subject of reticular chemistry is also concerned with providing a logical
framework for using molecular building units to make structures with useful
properties. The concept of node and link that was introduced by Alexander F.
Wells to describe a net (collection of nodes and links) has become central to the
“grammar” and “taxonomy” of reticular structures, which we discuss in this book.
They encompass both, large discrete entities such as metal-organic polyhedra
(MOPs) and covalent organic polyhedra (COPs) and extended frameworks such
as MOFs, zeolitic imidazolate frameworks (ZIFs), and COFs. This field expanded
dramatically and has come to represent a significant segment of the larger field
of chemistry.

Among the extensive body of knowledge produced from linking building
units using reticular chemistry there are a number of challenges that have been
addressed: First, the propensity of metal ions to have variable coordination
number and geometries, as mentioned above, is detrimental to controlling
the outcome of linking metal ions with organic linkers into MOFs or MOPs.
Although exceptions may be found where a metal ion prefers a specific arrange-
ment such as square planar for divalent platinum, in general the use of single
metal ions as nodes detracts from the needed control in producing a specific
structure. The use of poly-nuclear complexes named secondary building units
(SBUs), as in metal carboxylate clusters, locks the metal ions into position and
thereby the coordination geometry of the entire SBU is the determining factor
in the reticulation process. Second, since the SBUs are clusters by necessity and
the organic linkers are multi-atomic, reticular synthesis inevitably yields open
structures. The fact that the SBUs are rigid and directional provides for the
possibility of design and control of the resulting material. Since the SBUs are
made of strong bonds, when joined by organic linkers, they ensure architectural
stability and permanent porosity of the framework when the molecules filling
its pores are removed. The strong bonds also impart thermal stability and, when
they are kinetically inert, chemical stability of the overall porous structure.
Third, the ability to determine the conditions under which a specific SBU forms
has led to isoreticular synthesis where the same SBU can be joined by a variety
of linkers having the same linkage modality but with different size, length, and
functional groups attached to them. Fourth, the discovery of the conditions to
crystallize the products of these reticular syntheses has enabled the definitive
characterization of the outcome of the structures by X-ray diffraction and has
facilitated structure–property relationships. Ultimately, this aspect has vastly
contributed to the design of structures with specific functionality and pore
metrics. Fifth, the permanent porosity, thermal and chemical stability, and crys-
tallinity of these frameworks allow for chemical modification to be carried out
on their interior with full preservation of porosity and crystallinity. This meant
that large and extended structures can be transformed post-synthetically, and
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that the incorporation of a specific functionality can be achieved either before or
after formation of the product. Sixth, the precision with which such frameworks
can be made and their interior modified coupled to the flexibility in deploying a
variety of SBUs and organic linkers to make metal-organic and organic reticular
materials have given rise to a vast number of properties and applications.

Reticular chemistry has advanced to the point where flexibility and dynamics
can be incorporated into large and extended structures. This is accomplished
by using flexible constituents or by introducing mechanically interlocking rings
within the organic linker. More recently, mechanical entanglement was success-
fully used in interlacing organic threads to make woven extended structures.
In principle, this strategy is also applicable to the interlocking of large discrete
rings.

To fully appreciate reticular chemistry and its potential, it is instructive to view
reticular structures as being composed of backbone, functionality attached to
the backbone, and space encompassed by this construct. The backbone provides
the overall structural integrity while the functionality provides for optimal pore
environment. The pores can be adjusted to allow for molecules of various sizes,
shapes, and character to be incorporated and potentially transformed. In cases
when multiple functionalities are used to decorate the pores, the possibility of
having unique sequences of chemical entities becomes a reality and the poten-
tial for such sequences to code for specific properties exists. The diffusion of
molecules within such pore space will undoubtedly be influenced by the spe-
cific sequence. This ushers a new era in chemistry where it becomes possible to
design and make sequence-dependent materials. The recent advance in “editing”
reticular structures by linker or metal substitution without changing the overall
porosity and order within the structure is a very promising direction for being
able to deliberately alter such chemical sequences. It follows from this discus-
sion that reticular structures are amenable to the introduction of heterogeneity
such as defects and functionality by design making it possible to target specific
reactivity in ways not possible otherwise.

By linking molecules together into large and extended structures, reticular
chemistry has in effect endowed the molecule with additional properties inac-
cessible without it being linked. Specifically, since the molecule in the reticular
structure is fixed in position, it becomes more directly addressable, and depend-
ing on where it is linked, the units surrounding it can be considered effectively
as “protecting groups.” The fact that molecules are repeated throughout the
structure provides opportunities for that molecule to be part of a whole that
could function above and beyond the sum of its parts. The interface between
the molecules making up the structure and other molecules freely residing
in the pores as guests is a well-defined region of the overall structure. This
interface is also endowed with the same precision of design and definition that
is so characteristic to reticular structures. Accordingly, the interface can be
varied and tailored in ways the molecule cannot experience outside this intricate
environment. In essence, what reticular chemistry has done is to provide means
of controlling matter beyond molecules, in large and extended structures, and
to also provide the space within which molecules can be further controlled and
manipulated.
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Abbreviations

1,2-H2DACH 1,2-diaminocyclohexane
(V)MIL-47 V(O)(BDC)
13C CP-MAS 13C cross-polarization magic angle spinning
2,6-H2NDC naphthalene-2,6-dicarboxylic acid
1,4-H2NDC 4,4′-(naphthalene-2,6-diyl)dibenzoic acid
2-mBIM 2-methylbenzimidazolate
4,4′-H2DMEDBA 4,4′-(1,2-dimethoxyethane-1,2-diyl)dibenzoic

acid
4-nIM 4-nitroimidazolate
5-BBDC 5-tert-butyl-1,3-benzenedicarboxylate
AB 4-aminobenzoate
acac acetylacetonate
AD adeninate
ADHP adsorption-driven heat pumps
ADI adiponitrile
AFM atomic force microscope/atomic force

microscopy
aIM 2-carbaldehyde imidazolate
Al-PMOF-1 Al2(OH)2(TCPP-H2)
Al-soc-MOF-1 [In3O(H2O)3]2(TCPT)3(NO3)
ANH aromatic N-heterocycle
APTES 3-aminopropyltriethoxysilane
ASA p-arsanilic acid
ATZ 5-amino-triazolate
BASF Badische Anilin und Soda Fabrik
BBC 4,4′,4′′-(benzene-1,3,5-triyl-tris(benzene-

4,1-diyl))tribenzoate
BBCDC 9H-carbazole-3,6-dicarboxylate
bBIM 5-bromo-1H-benzo[d]imidazole
bBIM 6-bromobenzimidazolate
BBO-COF-1 [(TFB)2(PDA-(OH)2)3]benzoxazole
BBO-COF-2 [(TFPB)2(PDA-(OH)2)3]benzoxazole
BDA terephthaldehyde
BDA-(F) 2-fluoroterephthaldehyde
BDA-(F)4 2,3,5,6-tetrafluoroterephthaldehyde
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BDA-(H2C—C≡CH) 2,5-bis(2-propynyloxy)terephthalaldehyde
BDA-(OH)2 2,5-dihydroxy-1,4-benzenedialdehyde
BDA-(OMe)2 2,5-dimethoxyterephthaldehyde
BDBA 1,4-phenylenediboronic acid
BDH-(OEt)2 2,5-diethoxyterephtalohydrazide
BET model Brunauer–Emmett–Teller model
BIM benzimidazolate
bio-MOF-100 [Zn6O2(AD)4(BPDC)6](NO3)4
bio-MOF-101 [Zn6O2(AD)4(NDC)6](NO3)4
bio-MOF-102 [Zn6O2(AD)4(ABDC)6](NO3)4
bio-MOF-103 [Zn6O2(AD)4(NH2-TDC)6](NO3)4
BIPY 4,4′-bpyridine
BLP 1,3,5-(p-aminophenyl)-benzene-borane
Boc tert-butyloxycarbonyl
BPDA 4,4′-biphenyldialdehyde
BPEE (E)-1,2-di(pyridin-4-yl)ethene
Br-H2BDC 2-bromoterephthalic acid
BTB 4,4′,4′′-benzene-1,3,5-triyltribenzoate
BTBA benzene-1,3,5-triyltriboronic acid
BTCTB 4,4′,4′′-[benzene-1,3,5-triyltris

(carbonylimino)]tris-benzoate)
BTDD bis(1H-1,2,3-triazolo[4,5-b],[4′,5′-i])

dibenzo[1,4]dioxin
BTE 4,4′,4′′-(benzene-1,3,5-triyl-tris(benzene-

4,1-diyl))tribenzoate
BTEB 4′,5′-bis(4-carboxyphenyl)-[1,1′:2′,1′′-

terphenyl]-4,4′′-dicarboxylic acid
Bu butyl
BZD-(NO2)2 2,2′-dinitrobenzidine
CAL coordinative alignment
CAU-10 Al(OH)(m-BDC)
cBIM 5-chloro-1H-benzo[d]imidazole
cBIM 6-chlorobenzimidazole
CBP Cu(I)bis-4,4′-(1,10-phenanthroline-2,9-diyl)

diphenol
CCS CO2 capture and sequestration
CdIF-4 Cd(eIM)2
CdIF-9 Cd(nIM)2
cIM 2-chloro imidazolate
Cl2-H2BDC 2,5-dichloroterephthalic acid
CNG compression of natural gas
Co(TAP) tetra(4-aminophenyl)porphinato cobalt
COD 1,5-cyclooctadiene
COF covalent organic framework
COF-1 [BDBA]boroxine
COF-102 [TBPM]boroxine
COF-103 [TBPS]boroxine
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COF-105 [(TBPS)3(HHTP)4]boronate ester
COF-108 [(TBPM)3(HHTP)4]boronate ester
COF-202 [(TBPM)3(tert-butylsilane triol)4]borosilicate
COF-300 [(TAM)(BDA)2]imine
COF-320 [(TAM)(BPDA)2]imine
COF-366 [(H2TAP)(BDA)2]imine
COF-366-Co [(Co(TAP))(BDA)2]imine
COF-367-Co [(Co(TAP))(BPDA)2]imine
COF-42 [(TFB)2(BDH-(OEt)2)2]hydrazone
COF-43 [(TFP)2(BDH-(OEt)2)2]hydrazone
COF-5 [(HHTP)2(BDBA)3]boronate ester
COF-505-Cu (Cu)(BF4)[(PDB)(BZD)2]imine
COP covalent organic polyhedron
CP-MAS cross-polarization magic angle spinning
CP-MAS NMR cross-polarization magic angle spinning NMR
CS-COF [(HATP)2(PT)3]phenazine
CTF-1 [DCyB]triazine
Cu(TAP) [5,10,15,20-tetrakis(4-aminophenyl)

porphinato]-copper
CuBTTri H3[(Cu4Cl)3(BTTri)8]
DAA 2,6-diaminoanthracene
DAB (([2,2′-bipyridine]-5,5′-diylbis(oxy))

bis(4,1-phenylene))dimethanamine
DABCO 1,4-Diazabicyclo[2.2.2]octan
DABCO 1,4-Diazabicyclo[2.2.2]octane
DBA hexahydroxy-dehydrobenzoannulene
DBS 4-(dodecycloxy)benzoic acid
dcIM 4,5-dichloroimidazolate
DCyB 1,4-dicyanobenzene
DEA diethylamine
DFP 2,6-pyridinedicarboxaldehyde
DIT 1,14-di-iodo-3,6,9,12-tetraoxy-tetradecane
DLS dynamic light scattering
DMA dimethylamine
dmBIM 5,6-dimethylbenzimidazole
DMF N ,N-dimethylformamide
DMOF Zn(BDC)(DABCO)0.5
DMOF-1(NH2) Zn2(NH2-BDC)2(DABCO)
DOBPDC 4,4′-dioxidobiphenyl-3,3′-dicarboxylate
DOE US Department of Energy
DOX doxorubicin
DSC differential scanning calorimetry
DUT Dresden University of Technology
DUT-32 Zn4O(BPDC)(BTCTB)4/3
DUT-51 Zr6O6(OH)2(DTTDC)4(CH3COO)2
DUT-67 Zr6O6(OH)2(TDC)4(CH3COO)2
DUT-69 Zr6O4(OH)4(TDC)5(CH3COO)2
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EDDB 4,40-(ethyne-1,2-diyl)dibenzoic acid
EDX energy dispersive X-ray spectroscopy
eIM 2-ethyleimidazolate
ElAPO metal-aluminophosphate with additional Li,

Be, B, Ga, Ge, As, Ti
ElAPSO metal-silicoaluminophosphate with additional

Li, Be, B, Ga, Ge, As, Ti
en 1,2-ethylene diamine
Et ethyl
ETTA 1,1,2,2-tetrakis(4-aminophenyl)ethane
FDM Fudan Materials
FDM-3 [(Zn4O)5(Cu3OH)6(PyC)22.5(OH)18(H2O)6]

[Zn(OH)(H2O)3]3
FT-IR Fourier-transform infrared spectroscopy
GCMC grand canonical Monte Carlo
gea-MOF-1 Y9(μ3-OH)8(μ2-OH)3(BTB)6
GIWAXS grazing incidence wide angle X-ray scattering
GLU glutaronitrile
H2ABDC (E)-4,4′-(diazene-1,2-diyl)dibenzoic acid
H2ADC anthracene-9,10-dicarboxylic acid
H2BATZ bis(5-amino-1H-1,2,4-triazol-3-yl)methane
H2BBTA 1H ,5H-benzo(1,2-d:4,5-d′)bistriazole
H2BDC terephthalic acid (benzene-1,4-dicarboxylic

acid)
H2BPCu Cu2+-4,7,10,13,16,19,22,25-octaoxa-

2(2,9)-phenanthrolina-1,3(1,4)-
dibenzenacyclohexacosaphane @
4,4′-(1,10-phenanthroline-3,8-diyl)dibenzoic
acid

H2BPDC [1,1′-biphenyl]-4,4′-dicarboxylic acid
H2BPyDC [2,2′-bipyridine]-5,5′-dicarboxylic acid
H2CBDA 4,4′-carbonyldibenzoic acid
H2CONQDA 4,4′-(5,6,12,13-tetrachloro-1,3,8,10-tetraoxo-

1,3,8,10-tetrahydroanthra[2,1,9-def:6,5,10-
d′e′f′]diisoquinoline-2,9-diyl)dibenzoic acid

H2DMBDA 4,4′-((2,5-dimethoxy-1,4-phenylene)
bis(ethyne-2,1-diyl))dibenzoic acid

H2DTTDC dithieno[3,2-b:2′,3′-d]thiophene-
2,6-dicarboxylic acid

H2EDBA (E)-4,4′-(ethene-1,2-diyl)dibenzoic acid
H2HPDC 4,5,9,10-tetrahydropyrene-2,7-dicarboxylic

acid
H2MPBA 4-(3,5-dimethylpyrazol-4-yl)benzoic acid
H2MPDA 4,4′-(2,9-dimethyl-1,10-phenanthroline-

3,8-diyl)dibenzoic acid
H2NDC naphthalene-2,6-dicarboxylic acid
H2OBA 4,4′-oxybis(benzoic acid)
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H2PDC pyrene-2,7-dicarboxylic acid
H2TAP 5,10,15,20-tetrakis(4-amino-phenyl)porphyrin
H2TDC thiophene-2,5-dicarboxylic acid
H2TPDC [1,1′:4′,1′′-terphenyl]-4,4′′-dicarboxylic acid
H2TTC 2,2′:5′,2′′-terthiophene-5,5′′-dicarboxylic

acid
H3BBC 5′′-(4′-carboxy-[1,1′-biphenyl]-4-yl)-

[1,1′:4′,1′′:3′′,1′′′:4′′′,1′′′′-quinquephenyl]-
4,4′′′′-dicarboxylic acid

H3BHTC [1,1′-biphenyl]-3,4′,5-tricarboxylic acid
H3BTB 5′-(4-carboxyphenyl)-[1,1′:3′,1′′-terphenyl]-

4,4′′-dicarboxylic acid
H3BTC benzene-1,3,5-tricarboxylate
H3BTE 4,4′,4′′-(benzene-1,3,5-triyltris(ethyne-

2,1-diyl)tribenzoic acid
H3BTN 6,6′,6′′-(benzene-1,3,5-triyl)tris(2-naphthoic

acid)
H3BTT 1,3,5-benzetristetrazole
H3BTTC benzo[1,2-b:3,4-b′:5,6-b′′]trithiophene-

2,5,8-tricarboxylic acid
H3BTTri 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene
H3HTB 4-[7,11-bis(4-carboxyphenyl)-2,4,6,8,10,12,13-

heptaazatricyclo[7.3.1.05,13]trideca-1,3,5,7,9,
11-hexaen-3-yl]benzoic acid

H3IMDC 1H-imidazole-4,5-dicarboxylic acid
H3TAPB 4′,4′′′,4′′′′′-(1,3,5-triazine-2,4,6-triyl)

tris(([1′′′′,1′′′′′-biphenyl]-4-carboxylic acid))
H3TATAB 4,4′,4′′-((1,3,5-triazine-2,4,6-triyl)

tris(azanediyl))tribenzoic acid
H3TATAB 4,4′,4′′-((1,3,5-triazine-2,4,6-triyl)

tris(azanediyl))tribenzoic acid
H3TATB 4,4′,4′′-(1,3,5-triazine-2,4,6-triyl)tribenzoic

acid
H3TCA 4,4′,4′′-nitrilotribenzoic acid
H3TCPBA 4′,4′′′,4′′′′′-nitrilotris(([1′′′′,1′′′′′-biphenyl]-

4-carboxylic acid))
H3TTCA triphenylene-2,6,10-tricarboxylic acid
H3TZI 5-tetrazolylisophthalic acid
H4ABTC (E)-5,5′-(diazene-1,2-diyl)diisophthalic acid
H4ADBTD 5′,5′′′′-(anthracene-9,10-diyl)

bis(([1,1′:3′,1′′-terphenyl]-4,4′′-dicarboxylic
acid))

H4ADIP 4,4′-(anthracene-9,10-diyl)dibenzoic acid
H4ATB 4,4′,4′′,4′′′-(adamantane-1,3,5,7-tetrayl)

tetrabenzoic acid
H4BBDC 5-boronobenzene-1,3-dicarboxylate
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H4BITC 18-crown-6 @ 4,4′,4′′,4′′′-(1,4-
phenylenebis(1H-benzo[d]imidazole-2,4,7-
triyl))tetrabenzoic acid

H4BNETBA-(OEt)2 4,4′,4′′,4′′′-((1E,1′E,1′′E,1′′′E)-(2,2′-diethoxy-
[1,1′-binaphthalene]-4,4′,6,6′-tetrayl)
tetrakis(ethene-2,1-diyl))tetrabenzoic acid

H4BPDCD 9,9′-([1,1′-biphenyl]-4,4′-diyl)bis(9H-
carbazole-3,6-dicarboxylic acid)

H4BPTC [1,1′-biphenyl]-3,3′,5,5′-tetracarboxylic acid
H4CBI 1,12-Bis(3′,5′-bis(hydroxycarbonyl)

phen-1-yl)-1,12-dicarba-closododecaborane
H4CQDA(OEt)2 5′,5′′-bis(4-carboxyphenyl)-2′,2′′-diethoxy-

[1,1′:3′,1′′:3′′,1′′′-quaterphenyl]-4,4′′′-
dicarboxylic acid

H4DH11PhDC/DOT-XI 4′-[4′-(4′-{4′-[4′-(4-carboxy-3-
hydroxyphenyl)-2,2′,5,5′-tetramethyl-
[1,1′-biphenyl]-4-yl]-5′-hexyl-2,5-dimethyl-
2′-pentyl-[1,1′-biphenyl]-4-yl}-2,2′,5,5′-
tetramethyl-[1,1′-biphenyl]-4-yl)-2,5-
dimethyl-2′,5′-dipentyl-[1,1′-biphenyl]-4-yl]-
3-hydroxy-2′,5′-dimethyl-[1,1′-biphenyl]-4-
carboxylic acid

H4DOT 2,5-dihydroxyterephthalic acid
H4DOT-III 3,3′′-dihydroxy-2′,5′-dimethyl-

(1,1′:4′,1′′-terphenyl)-4,4′′-dicarboxylic acid
H4ETTC 4′,4′′′,4′′′′′,4′′′′′′′-(ethene-1,1,2,2-tetrayl)

tetrakis(([1,1′-biphenyl]-4-carboxylic acid))
H4MTB 4,4′,4′′,4′′′-methanetetrayltetrabenzoic acid
H4MTPA 4,4′,4′′,4′′′-((methanetetrayltetrakis

(benzene-4,1-diyl)tetrakis(ethyne-2,1-diyl))
tetrabenzoic acid

H4MTPB 4′,4′′′,4′′′′′,4′′′′′′′-methanetetrayltetrakis
(([1,1′-biphenyl]-4-carboxylic acid))

H4PyrDI 5,5′-(pyrimidine-2,5-diyl)diisophthalic acid
H4QPTCA [1,1′:4′,1′′:4′′,1′′′:4′′′,1′′′′-quinquephenyl]-

3,3′′′′,5,5′′′′-tetracarboxylic acid
H4SFTT 4,4′,4′′,4′′′-(9,9′-spirobi[fluorene]-2,2′,7,7′-

tetrayl)tetrabenzoic acid
H4STBA 4,4′,4′′,4′′′-silanetetrayltetrabenzoic acid
H4TBADB-18Cr6 4,4′,4′′,4′′′-(6,7,9,10,17,18,20,21-

octahydrodibenzo[b,k][1,4,7,10,13,16]
hexaoxacyclooctadecine-2,3,13,14-tetrayl)
tetrabenzoic acid

H4TBAPy 4,4′,4′′,4′′′-(1,8-dihydropyrene-1,3,6,8-tetrayl)
tetrabenzoic acid
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H4TCBPP-H2 4′,4′′′,4′′′′′,4′′′′′′′-(porphyrin-5,10,15,20-
tetrayl)tetrakis(([1,1′-biphenyl]-4-carboxylic
acid))

H4TCPP-H2 4,4′,4′′,4′′′-(porphyrin-5,10,15,20-tetrayl)
tetrabenzoic acid

H4TPTC terphenyl-3,3′,5,5′-tetracarboxylaic acid
H5PTPCA 5′-(4-carboxyphenyl)-[1,1′:3′,1′′-terphenyl]-

3,3′′,5,5′′-tetracarboxylic acid
H6BHEHPI 1,3,5-tris[(1,3-carboxylic acid-5-(4-(ethynyl)

phenyl))butadiynyl]-benzene
H6BHEI 5,5′,5′′-(benzene-1,3,5-triyltris(buta-1,3-

diyne-4,1-diyl))triisophthalic acid
H6HTTEI 5,5′,5′′-(((benzene-1,3,5-triyltris(ethyne-

2,1-diyl))tris(benzene-4,1-diyl))tris(ethyne-2,
1-diyl))triisophthalic acid

H6PTEI 4,4′-((5′-(4-((4-((oxo-λ3-methyl)-λ3-oxidaneyl)
phenyl)ethynyl)phenyl)-[1,1′:3′,1′′-terphenyl]-
4,4′′-diyl)bis(ethyne-2,1-diyl))dibenzoic acid

H6TDCPB 4,4′,4′′,4′′′,4′′′′,4′′′′′-((nitrilotris(benzene-
4,1-diyl))tris(azanetriyl))hexabenzoic acid

H6TPBTM 5,5′,5′′-((benzene-1,3,5-tricarbonyl)
tris(azanediyl))triisophthalic acid

H6TTA 5′,5′′′-bis(4-carboxyphenyl)-5′′-(4,4′′-
dicarboxy-[1,1′:3′,1′′-terphenyl]-5′-yl)-
[1,1′:3′,1′′:3′′,1′′′:3′′′,1′′′′-quinquephenyl]-4,
4′′′′-dicarboxylic acid

H6TTATP 5,5′,5′′-((1,3,5-triazine-2,4,6-triyl)
tris(azanediyl)triisophthalic acid

H8BPTCD 9,9′,9′′,9′′′-([1,1′-biphenyl]-3,3′,5,5′-tetrayl)
tetrakis(9H-carbazole-3,6-dicarboxylic acid)

H8MTBDA 4′,4′′′,4′′′′′,4′′′′′′′-methanetetrayltetrakis
(([1,1′-biphenyl]-3,5-dicarboxylic acid))

H8TBCPPP-H2 5′,5′′′′,5′′′′′′′,5′′′′′′′′′′-(porphyrin-5,10,15,20-
tetrayl)tetrakis(([1,1′:3′,1′′-terphenyl]-4,4′′-
dicarboxylic acid))

H8TDPEPE 4′,4′′′,4′′′′′,4′′′′′′′-(ethene-1,1,2,2-tetrayl)
tetrakis(([1,1′-biphenyl]-3,5-dicarboxylic
acid))

HATP 2,3,6,7,10,11-hexaaminoterphenylene
HDN hydrodenitrogenation
HEIMIM (E)-2-(((2-hydroxyethyl)imino)methyl)

imidazolate
HHTP 2,3,6,7,10,11-hexahydroxyterphenylene
HKUST Hong Kong University of Science and

Technology
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HKUST-1 Cu3(BTC)2
HPP 1,3,4,6,7,8-hexahydro-2H-pyrimido

[1,2-a]pyrimidine
HR-PXRD High resolution X-ray diffraction
HSAB hard-soft acid–base
IAST ideal adsorbed solution theory
ICOF-1 [(OHM)(TMB)2]spiroborate
ICP inductively coupled plasma
In-soc-MOF [In3O(H2O)3]2(ABDC)3(NO3)
iPr iso-propyl
IRMOF-74-III Mg(DOT-III)
IRMOF-74-III(CH2NH2) Mg(CH2NH2-DOT-III)
IRMOF-74-III(CH2NHMe) Mg(CH2NHMe-DOT-III)
IRMOF-993 Zn4O(ADC)3 pcu topology (theoretical)
IUPAC International Union of Pure and Applied

Chemistry
IZA Structure Commission of the International

Zeolite Association
JUC-77 In(OH)(OBA)
KAUST-7 or NbOFFIVE-1-Ni Ni(Pyr)2(NbOF5
Keggin Type POM (NH4)3[(XO4)Mo12O36]), X = P, Si, S among

others and M = Mo, W
l-Asp l-aspartate
LD50 The median lethal dose in toxicology.

LD50 = lethal dose, 50%
LMCT ligand-to-metal charge transfer
LNG liquefied natural gas
LZU-1 [(TFP)2(PDA)3]imine
MAF-25 Mn2+

2 Cl2(BBTA)
MAF-25-ox Mn2+Mn3+(OH)Cl2(BBTA)
MAF-27 Co2+

2 Cl2(BBTA)
MAF-27-ox Co2+Co3+(OH)Cl2(BBTA)
MAF-49 [Zn(BATZ)](H2O)0.5
MAF-X8 Zn(MPBA)
MAMS-1 Ni8(5-BBDC)6(μ3-OH)4
m-BDC isophthalic acid
mBIM 5-methyl-1H-benzo[d]imidazole
mBIM 6-methylbenzimidazolate
Me methyl
Me2-H2TPDC 2′,5′-dimethyl-[1,1′:4′,1′′-terphenyl]-

4,4′′-dicarboxylic acid
Me4-BPDC 2,2′,6,6′-tetramethylbiphenyl-4,4′-dicarboxylic

acid
Me4-DMOF Zn(Me4-BDC)(DABCO)0.5
MeAPO metal-aluminophosphate
MeAPSO metal-silicoaluminophosphate
MeOH methanol
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MeOHIM 2-hydroxymethylimidazolate
MIL Materials Institute Lavoisier
MIL-100 [M3O(H2O)2L](BTC)2/[M3OL3](BTC)2
MIL-100(Fe_BTB) [Fe3O(H2O)2(L)](BTB)2
MIL-101 [M3OL3](BDC)3
MIL-125 Ti8O8(OH)4(BDC)6
MIL-125(NH2) Ti8O8(OH)4(NH2-BDC)6
MIL-53 M(OH)(BDC)
MIL-88 Fe3O(OH)(H2O)2(BDC)3
mIM 2-methyl-1H-imidazole
mmen N ,N ′-dimethylethylenediamine
MMM mixed-matrix membranes
MOF metal-organic framework
MOF-177 Zn4O(BTB)2
MOF-180 Zn4O(BTE)2
MOF-2 Zn(BDC)(H2O)
MOF-200 Zn4O(BBC)2
MOF-205 Zn4O(BTB)4/3(NDC)
MOF-210 (Zn4O)3(BPDC)4(BTE)3
MOF-325 Cu3(H2O)3[(Cu3O)(PyC)3(NO3)L2]2
MOF-5 Zn4O(BDC)3
MOF-520 Al8(OH)8(HCOO)4(BTB)4
MOF-520-BPDC Al8(OH)8 (BTB)4(BPDC)2
MOF-525 Zr6O4(OH)4(TCPP-H2)3 (ftw topology)
MOF-545 Zr6O4(OH)4(TCPP-H2)2(H2O)8 (scsq

topology)
MOF-74 M2(DOT)
MOF-801 Zr6O4(OH)4(fumarate)12
MOF-808 Zr6O4(OH)4(HCOO)6(BTC)2
MOF-812 Zr6O4(OH)4(MTB)3(H2O)2
MOF-841 Zr6O4(OH)4(MTB)2(HCOO)4(H2O)4
MOF-901 Ti6O6(OCH3)6(AB)6
MOP metal-organic polyhedron
MS mass spectroscopy
MTV multivariate
MUF Massey University Metal–Organic

Frameworks
MUF-7a (Zn4O)3(BTB)4/3(BDC)1/2 (BPDC)1/2
MWC maximum working capacity
NASA National Aeronautics and Space

Administration
nBIM 6-nitrobenzimidazolate
NBPDA 4-(tert-butoxycarbonylamino)-aniline
n-BuLi n-butyllithium
NG natural gas
NH2-H2BDC 2-aminoterephthalic acid
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NH2-H2TPDC 2′-amino-[1,1′:4′,1′′-terphenyl]-4,4′′-
dicarboxylic acid

nIM 2-nitroimidazolate
NLDFT nonlinear density functional theory
NLDFT nonlinear density functional theory
NMP N-methyl-2-pyrrolidone
NMR nuclear magnetic resonance
NOTT Nottingham
NOTT-101 Cu2(H2O)2(TPTC)
NOTT-103 Cu2(H2O)2(2,6-NDI)
NOTT-109 Cu2(H2O)2(1,4-NDI)
NU Northwestern University
NU-100 Cu3(H2O)(HTTEI)
NU-1000 Zr6(μ3-OH/O)8(H2O,OH)8(TBAPy)2
NU-110 Cu3(H2O)(BHEHPI)
NU-902 Zr6O4(OH)4(TCPP-H2)2(H2O)4(OH)4

(scu topology)
OAc acetate, CH3COO−

OHM octa-hydroxy functionalized macrocycle
Oh-nano-Ag octahedral silver nanocrystal
OTf triflate
OX oxalate
PCN porous coordination network
PCN-125 [Cu2(H2O)2](TPDC)
PCN-13 Zn4O(H2O)3(ADC)3
PCN-14 Cu2(H2O)2(ADIP)
PCN-223 Zr6O4(OH)4(TCPP-H2)3 (shp topology)
PCN225 Zr6O4(OH)4(TCPP-H2)2(H2O)4(OH)4

(sqc topology)
PCN-332 [M3O(H2O)2(L)](BTTC)2
PCN333 [M3O(H2O)2(L)](TATB)2
PCN-6 Cu3(TATB)2 interpenetrated
PCN-6′ Cu3(TATB)2
PCN-61 Cu3(H2O)3(BTEI)
PCN-610 Cu3(H2O)(HTTEI)
PCN-68 Cu3(H2O)3(PTEI)
PCN-700 Zr6O4(OH)4(Me2-BPDC)4(OH)4(H2O)4
PCN-700 Zr6O4(OH)8(H2O)4(Me2-BPDC)8/2
PCN-701 Zr6O4(OH)6(H2O)2(Me2-BPDC)8/2(BDC)2/2
PCN-702 Zr6O4(OH)6(H2O)2(Me2-BPDC)8/2

(Me2-TPDC)1/2
PCN-703 Zr6O4(OH)6(H2O)2(Me2-BPDC)8/2

(BDC)2/2(Me2-TPDC)1/2
PCN-777 Zr6O4(OH)4(HCOO)6(TATB)2
PCN-9 Cu3(HTB)2 interpenetrated
PCN-9′ Cu3(HTB)2
PDA 1,4-phenylenediamine
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PDA-(OH)2 2,5-dihydroxy-1,4-phenylenediamine
PDAN 2,2′-(1,4-phenylene)diacetonitrile
PDB 0,13,16,19,22,25-octaoxa-2(2,9)-

phenanthrolina-1,3(1,4)-
dibenzenacyclohexacosaphane

PDH 1,4-dicarbonyl-phenyl-dihydrazide
PET polyethyleneterephthalate
PIC γ-picoline
PI-COF-1 [(TAPA)2(PMDA)3]imide
PI-COF-2 [(TAPB)2(PMDA)3]imide
PI-COF-3 [(TABPB)2(PMDA)3]imide
PI-COF-4 [(TAA)(PMDA)2]imide
PI-COF-5 [(TAM)(PMDA)2]imide
PMDA pyromellitic dianhydride
PMOF-1 Cu3(H2O)(TPBTM)
POM polyoxometallate
PSA pressure swing adsorption
PSE post-synthetic linker exchange
PSM post-synthetic modification
PT tert-butyl pyrenetetraone
PTA phosphotungstic acid
PTO 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone
Pur purine
PVP polyvinylpyrolidone
PX p-xylene
PXRD powder X-ray diffraction
Py pyridine
PyC 4-pyrazolecarboxylic acid
Pyr pyrazine
PyTA 4,4′,4′′,4′′′(Pyrene-1,3,6,8-tetrayl)tetraaniline
QCM quartz crystal microbalance
Qst isoteric heat of adsorption
RCSR reticular Chemistry Structure Resource
RED 3D rotation electron diffraction
RH relative humidity
rho Z-MOF In(HIMDC)2(HPP) with rho topology
rht-MOF-1 [Cu3(TZI)2(H2O)2]12[Cu3O(OH)(H2O)2]8
RON research octane number
ROX roxorsone
RPM3-Zn Zn2(BPDC)2(BPEE)
SALE solvent assisted linker exchange
SALEM-1 Cd(mIM)2
SALI solvent assisted ligand incorporation
SAPO silicoaluminophosphate
SBU secondary building unit
SDA structure directing agent
SEM scanning electron microscope
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SIFSIX-2-Cu Cu(DPA)2(SiF6)
SIFSIX-2-Cu-i Cu(DPA)2(SiF6) interpenetrated
SIFSIX-3-Ni Ni(Pyr)2(SiF6)
SLG single layer graphene
SLI sequential linker installation
S-MOF-808 Zr6O5(OH)3(BTC)2(SO4)2.5(H2O)2.5
sod Z-MOF In(HIMDC)2(HIM) with sod topology
sp2C-COF [(TFPPy)(PDAN)2]acrylonitrile
SQ squaric acid
ST-1 (Zn4O)3(TATAB)4(BDC)3
ST-2 (Zn4O)3(TATAB)4(NDC)3
ST-3 (Zn4O)3(TATAB)4(BPDC)2(BDC)
ST-4 (Zn4O)5(TATAB)4(BPDC)6
STM scanning tunneling microscopy
SUC succinonitrile
TAA 1,3,5,7-tetraaminoadamantane
TABPB 1,3,5-tris[4-amino(1,1biphenyl-4-yl)]benzene
TAM tetra-(4-aminophenyl)methane
TAPA tris(4-aminophenyl)amine
TAPB 1,3,5-tris(4-aminophenyl)benzene
TAPB 1,3,5-tris(4-aminophenyl)benzene
TBPM tetra(4-dihydroxyborylphenyl)methane
TBPS tetra(4-dihydroxyborylphenyl)silane
TBPy 5,5′-bis(2-(5′-methyl-[2,2′-bipyridin]-

5-yl)ethyl)-2,2′-bipyridine
TBU tertiary building unit
TCA (1,1′,3′,1′′-Terphenyl)-3,3′′,5,5′′-

tetracarbaldehyde
TCAT 4-(tert-butyl)benzene-1,2-diol
TCP 4,4′,4′′,4′′′-(porphyrin-5,10,15,20-tetrayl)

tetrabenzonitrile
TCTPM 4,4′,4′′,4′′′-tetracyanotetraphenylmethane
TEM transmission electron microscope
TEM transmission electron microscopy
TEMPO 4-azido-2,2,6,6-tetramethyl-1-piperidinyloxy
TEOA triethanolamine
TFA trifluoro-acetic acid
TFB 1,3,5-triformyl-benzene
TFP 1,3,5-tris-(4-formylphenyl)-benzene
TFP triformylphloroglucinol
TFPPy 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)

tetrabenzaldehyde
TGA thermogravimetric analysis
THF tetrahydrofuran
TMB trismethoxy borate
TMTPDC 2′,3′,5′,6′-tertramethylterphenyl-4,4′′-

dicarboxylic acid
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TPa-1 [(TFP)2(PDA)3]
𝛽-ketoenamine

TPP 5,10,15,20-tetra(pyridin-4-yl)porphyrin
TSA temperature swing adsorption
TTH (9s,10s)-13,16-diethyl-9,10-dihydro-9,

10-[1,2]benzenoanthracene-2,3,6,7-tetraol
UiO University of Oslo
UiO-66 Zr6O4(OH)4(BDC)12
UiO-67 Zr6O4(OH)4(BPDC)12
UiO-68 Zr6O4(OH)4(TPDC)12
UMCM University of Michigan Crystalline Material
UMCM-1 Zn4O(BDC)(BTB)4/3
UMCM-1(NH2) Zn4O(BDC)(BTB)4/3
UMCM-10 Zn4O(BDC)0.75(Me4-BPDC)0.75(TCA)
UMCM-11 Zn4O(BDC)0.75(EDDC)0.75(TCA)
UMCM-12 Zn4O(BDC)0.75(MTMTPDC)0.75(TCA)
UMCM-150 Cu3(BHTC)2(H2O)3
UMCM-2 Zn4O(T2DC)(BTB)4/3
UMCM-309a Zr6O4(OH)4(BTB)6(OH)6(H2O)6
UMCM-4 Zn4O(BDC)1.5(TCA)
usf-Z-MOF In5(HIMDC)10(1,2-H2DACH)2.5 with med

topology
UTSA-76 Cu3(H2O)3(PyrDI)
UV–Vis ultraviolet–visible spectroscopy
VED volumetric energy density
VSA vacuum swing adsorption
XAS X-ray absorption spectroscopy
XPS X-ray photoelectron spectroscopy
ZABU SBU Zn8O2(AD)4(−COO)12
ZIF zeolitic imidazolate framework
ZIF-20 Zn(Pur)2
ZIF-300 Zn(2-mIM)0.86(bBIM)1.14
ZIF-301 Zn(2-mIM)0.94(cBIM)1.06
ZIF302 Zn(2-mIM)0.67(mBIM)1.33
ZIF-376 Zn(nbIM)0.25(mIM)0.25(IM)1.5
ZIF-412 Zn(BIM)1.13(nIM)0.62(IM)0.25
ZIF-414 Zn(nbIM)0.91(mIM)0.62(IM)0.47
ZIF-486 Zn(nbIM)0.20(mIM)0.65(IM)1.15
ZIF-68 Zn(BIM)(nIM)
ZIF-7 Zn(BIM)2
ZIF-8 Zn(mIM)2
ZIF-90 Zn(aIM)2
ZIF-91 Zn(MeOHIM,aIM)2
ZIF-92 Zn(HEIMIM,aIM)2
Z-MOF metal-organic framework with zeolitic

topology
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1

Emergence of Metal-Organic Frameworks

1.1 Introduction

Reticular chemistry1 is the study of linking discrete chemical entities (molecules
and clusters) by strong bonds to make extended structures such as metal-organic
frameworks (MOFs). In MOFs, polynuclear metal clusters are joined together
by organic linkers to make crystalline porous frameworks. MOFs combine the
synthetic control exercised in making organic molecules with the vast geomet-
ric and compositional variations possible by using inorganic units. The reticular
chemistry of MOFs has combined two fields of chemistry that have been prac-
ticed and taught separately, into one. Accordingly, the synthesis of MOFs requires
the well-honed skills of both organic and inorganic chemists to make extended
solids with precisely designed structures and properties. These are imparted by
the constituents yet go beyond what would be possible by the individual molec-
ular building units. One such property is the open space encompassed by the
framework into which molecules can be introduced and transformed in a manner
not possible otherwise. Given the potential of reticular synthesis and the place it is
beginning to occupy in the larger context of chemistry, it is instructive to provide
a historical perspective on how this new field has emerged. Since MOFs were the
first class of crystalline solids to be developed in the realm of reticular chemistry,
their history figures prominently in its initial development.

1.2 Early Examples of Coordination Solids

The field of synthetic metal-organic chemistry as it is practiced today has
emerged from coordination chemistry. Early examples of transition metal
complexes were discovered by serendipity centuries ago and at that time only
little was known about their structure and composition. The first reported
example of a synthetic coordination compound can be traced back to the
discovery of the pigment “Prussian blue” in Berlin, Germany, in the beginning
of the eighteenth century [1]. The story of this finding is captured in a book by
Georg E. Stahl [2]. According to him, the discovery of Prussian blue took place

1 The term “reticular” is derived from Latin “rēticulum” meaning “having the form of a net” or
“netlike.”

Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks,
First Edition. Omar M. Yaghi, Markus J. Kalmutzki, and Christian S. Diercks.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.
Companion website: www.wiley.com/go/yaghi/reticular
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in the laboratories of Johann K. Dippel who was preparing a so-called “animal
oil” by distillation of animal materials. This was then repeatedly distilled from
potash (K2CO3) to remove undesired impurities. This procedure promotes the
decomposition of organic components to form cyanide, which subsequently
reacts with residual iron from the animal blood to form hexacyanoferrate ions
[M2Fe(CN)6] (M = Na+, K+), which stays behind as an impurity in the potash. At
that time, a color maker named Johann J. Diesbach worked in Dippel’s laboratory
synthesizing “Florentine lake,” an organic red pigment based on cochineal red.
Usually, he accomplished this by precipitation of an extract of cochineal with
potash and the addition of alum [KAl(SO4)2⋅12H2O] and iron sulfate (FeSO4)
to enhance both the color and the processing of the resulting pigment. At one
point, Diesbach had run out of potash so he borrowed some of the potash that
had been used in the production of Dippel’s animal oil. To his surprise, upon
addition of this contaminated potash he observed an unexpected rich blue
precipitate, later termed Prussian blue, Fe3+

4 [Fe2+(CN)6]3⋅H2O.
Owing to their intense colors, a variety of coordination compounds have had

widespread practical use throughout history as pigments (e.g. Prussian blue) and
dyes (e.g. alizarin) without knowledge of their chemical composition or struc-
ture [1c, 3]. As illustrated with this representative example, the serendipitous
discoveries of coordination compounds at that time severely limited the number
of accessible materials and hence conclusions about their behavior were exclu-
sively based on phenomenological observations.

1.3 Werner Complexes

The conceptual foundation of coordination chemistry was laid by the Swiss
chemist Alfred Werner, who was ultimately awarded the Nobel Prize in chem-
istry in 1913 for his efforts [4]. When he started his career in 1890 he tried to
elucidate and conceptualize the spatial arrangement of atoms in coordination
complexes [5]. In 1857, F. August Kekulé proposed the model of constant valence,
which was based on the general assumption that every element only exists in
one valence and therefore only has one fixed coordination number [6]. Chemical
formulae were consequently given using the dot notation, as in CoCl3⋅6NH3,
which gave a correct description of the chemical composition but, as Werner
later determined, did not represent the actual molecular structure (Figure 1.1).

A key observation that led to this conclusion was that addition of hydrochloric
acid to a solution of CoCl3⋅6NH3 did not result in the quantitative liberation
of all six ammonia molecules per complex. The fact that some ammonia was

Figure 1.1 Chemical structure of CoCl3⋅6NH3 based on the theory of constant valence.
According to this theory cobalt has a valence of three and therefore has three ligands attached
(trigonal arrangement) with the remaining ligands forming chains.
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not released led Werner to deduce that it must be bound tightly to the central
cobalt atom. In contrast, upon addition of aqueous silver nitrate, all the chloride
ions were precipitated as silver chloride. Furthermore, in experiments con-
ducted on a series of compounds of general formula CoCl3⋅nNH3 (n = 1–6)
containing various amounts of ammonia, the amount of silver chloride formed
by addition of silver nitrate was shown to be directly proportional to the number
of ammonia molecules bound to the Co3+ center (Figure 1.2)2 [7c]. Werner
carried out conductivity measurements on solutions containing these different
complexes, where he observed a trend in conductivity that could be directly
correlated to the number of free chloride ions [8]. Based on these findings,
Werner concluded that an attractive force must exert uniformly from the
central metal ion toward all parts of its surface and that six ligands arrange
around this center of attraction in order to minimize the interactions between
themselves but maximize their interactions with the metal ion. According to this
new concept the aforementioned complexes were denoted as [Co(NH3)6]Cl3,
[Co(NH3)5Cl]Cl2, and [Co(NH3)4Cl2]Cl, illustrating that they are in fact built
from six ligands surrounding one central Co3+ ion.

The coordination number 6 found for this complex can adopt three differ-
ent geometries: hexagonal planar, trigonal-prismatic, and octahedral. These
geometries can be distinguished by the number of their possible isomers. In
order to determine the geometry of CoCl3⋅nNH3 complexes (i.e. which one of
these conformations is in fact favored) Werner conducted detailed studies on
[Co(NH3)4Cl2]Cl. For this complex, a hexagonal planar or trigonal prismatic
coordination affords three different stereoisomers, whereas the octahedral
coordination can only result in two such isomers (Figure 1.3). Werner verified

Figure 1.2 Precipitation of silver(I) chloride by addition of silver(I) nitrate to solutions of
different ionization isomers of CoCl3⋅nNH3. The amount of silver(I) chloride precipitated was
found to be different for each isomer. The chemical formulae shown on the right indicate a
coordination number of 6 for the Co3+ center.

Figure 1.3 Possible isomers for the octahedral
complex of formula Co(NH3)4Cl2. The violet
cis-isomer (“violeo” complex) is shown on the
left, the green trans-isomer (“praseo” complex)
is shown on the right. The two isomers can be
distinguished by their vivid red and green
colors, respectively. Color code: Co, blue; N,
green; Cl, pink; H, light gray.

2 These findings could also be explained by the chain theory developed by Christian Blomstrand,
which was later further developed by Sophus Jørgensen [7].
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the latter by isolating two, not three, isomers. This work laid the foundation for
the subsequent development of coordination chemistry [9].

1.4 Hofmann Clathrates

The newly gained insight into the precise molecular structure provided by
Werner’s work served as an inspiration to extend the practice of coordination
chemistry from the molecular (0D) regime into higher dimensions, especially
2D and 3D extended structures. An early example of a coordination com-
pound with an extended 2D structure was published by Karl A. Hofmann in
1897 [10]. Slow diffusion of C6H6 into an NH3 solution of Ni(CN)2 yielded
a crystalline material of the general formula [Ni(CN)2(L)](C6H6) (L = NH3),
commonly referred to as Hofmann clathrate (Figure 1.4).3 This compound
was first speculated to be a molecular solid composed of Ni(CN)3(η6-C6H6)
molecules, but when its crystal structure was solved by single crystal X-ray
diffraction, this material was found to be an extended coordination compound,
built from 2D layers of alternating octahedral and square planar Ni2+ ions linked
by CN− ions [12]. Terminal ammonia ligands on the octahedral nickel centers
pointing toward adjacent layers facilitate the formation of cavities, rendering the
compound capable of encapsulating benzene as guests. These guest molecules
are, as in many cases, solvent molecules trapped during the synthesis of the
material that function as templates and hence play an important role in the

Figure 1.4 Representation of the crystal structure of the original Hofmann clathrate as
determined by Herbert M. Powell and coworkers in 1952. Octahedral and square planar nickel
moieties are linked by CN− ions into stacked layers of composition Ni(CN)2(NH3) that are
separated by benzene guests. The two different coordination geometries for Ni2+ (d8) can be
explained by the strength of the ligand field. While strong ligands (−NH3 and −NC) result in an
octahedral splitting, a square planar splitting is more favorable for weaker ligands (−CN). All
hydrogen atoms are omitted for clarity. Color code: Ni, blue and orange spheres; C, gray; N,
green; benzene guest, light gray.

3 The term clathrate was first coined by Herbert M. Powell [11].
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formation of the clathrate material. Structural collapse of Hofmann clathrates
and related materials upon removal of the guest molecules from the structures is
commonly observed.

The structural elucidation of this material sparked an interest in extended
coordination compounds and consequently a variety of Hofmann clathrates
have been reported. Iwamoto et al. focused on a more systematic approach
for the synthesis of Hofmann-type compounds and discovered that in general
this type of material is built from two different units, namely [Ma

2+(CN)4]2−

and [Mb
2+(NH3)2]2+ (where a and b indicate different divalent metals such as

Cd2+ or Ni2+) and that the terminal ammonium ligands can be replaced by
alkylamines [13]. They employed precursors of these complex ions in a reaction
mixture involving neutral aromatic solvents to build structures of the general
formula [Ma(NH3)2Mb(CN)4]G (G = benzene, aniline, pyrrole, or thiophene
guest molecules) following Eq. (1.1).

[Ma2+(CN)4]2− + [M2+
b (NH3)2]2+ G

−−→ [Ma(NH3)2Mb(CN)4] (1.1)

After the successful substitution of the ammonia ligands by alkylamines, the
next logical step was to employ bifunctional amino-linkers to connect adjacent
layers (Figure 1.5) [14]. Iwamoto and coworkers demonstrated that the terminal
ammonia ligands can be replaced with α,ω-diaminoalkanes that link adjacent lay-
ers and thereby create space for encapsulation of guests. The length of the organic
spacer can be systematically varied to allow for size-selective inclusion of guest
molecules [15].

The introduction of organic linkers between adjacent layers facilitates the
adjustment of the interlayer distance and thus has a strong impact on the
properties of the extended coordination compound. To increase the control

Figure 1.5 Single crystal X-ray structure of a modified Hofmann clathrate. The 2D layers of the
Hofmann clathrate are linked by an α,ω-diaminoalkane (HMDA = hexametylene-1,6-diamine)
into a 3D extended structure of the chemical formula [Cd(HMDA)Ni(CN)4](C7H9N). Disordered
o-toluidine (C7H9N) guest molecules occupy the space between adjacent layers. All hydrogen
atoms are omitted for clarity. Color code: Cd, blue; Ni, orange; C, gray; N, green; guest
molecules, light gray.
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that can be exercised over the metrics of extended structures, the next logical
progression was to link metal ions entirely through organic linkers to form
what have come to be known as coordination networks (also referred to as
coordination polymers, although we prefer the use of the term networks as such
compounds are crystalline extended structures).

1.5 Coordination Networks

The first members of this new class of materials were reported by Saito and
coworkers who made use of the well-established chemistry of Cu+ ions and
linked them through bis(alkylnitrilo) units of different lengths to yield a series of
crystalline materials with structures of varying dimensionality [16]. While the
use of a short linker such as succinonitrile (SUC) results in a 1D structure, slightly
longer linkers favor the formation of layers, as was shown for glutaronitrile
(GLU), and further elongation leads to the formation of an interpenetrated 3D
structure, as in the example of adiponitrile (ADI). The key compound in this
series is [Cu(ADI)2](NO3), which adopts a 3D structure based on the diamond
net (dia) (Figure 1.6). The “open” architecture of this structure, owing to the
length of the organic linker, leads to sixfold interpenetration, leaving enough
space for the nitrate ions balancing the charge on the cationic framework.

The topological classification of [Cu(ADI)2](NO3) is based on the geometric
principles of crystal chemistry established by Alexander F. Wells, who developed
a system to simplify crystal structures by describing them in terms of nets con-
structed from nodes and links [17].

Since this concept is frequently used to describe extended structures, espe-
cially those of MOFs, it is instructive to briefly illustrate the basics underlying
this concept. Here, topology refers to a simplified representation of a crystal
structure considering only the connectivity and not the chemical information or
metrics of its constituents. It is invariant to bending, stretching, and collapsing,
but not to the making and breaking of connections (see Chapter 18). This
principle is illustrated by a fisherman’s net representing a square grid similar to
that of [Cu(ADI)2](NO3) (Figure 1.6). The net retains its square grid structure
whether it is folded or distorted, but loses it if one or more threads are cut in
half. This principle is useful in simplifying and classifying the crystal structures
of solids [18]. The nomenclature for net topologies uses three letter codes (small
bolded letters) that are compiled in the reticular chemistry structure resource
(RCSR) database. These names may be assigned arbitrarily but often they are
related to the names of naturally occurring minerals of that specific topology
(e.g. diamond, dia; quartz, qtz). The topology of the net underlying a crystal
structure is derived by deconstructing it into vertices and edges (nodes and
links). These are distinguished based on their number of points of extension: the
number of connections to other building units within the structure. An edge
has two points of extension, such as the ditopic linker adiponitrile (Figure 1.6),
and a vertex is defined as a building unit with three or more points of extension,
such as a metal ion with coordination number 4 or a cluster of atoms making
4 connections. These two definitions will enable us to simplify any given crystal
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Figure 1.6 Structures of a series of bis(alkylnitrilo) linked Cu+ coordination networks. Short
linkers such as succinonitrile (SUC) yield 1D chains of the kind shown on the left. 2D layers
(one is shown) are obtained from longer glutaronitile (GLU) linkers (center), and a 3D network
with dia topology is formed with adiponitrile (ADI) linkers (right). All hydrogen atoms are
omitted and only one framework of the sixfold interpenetrated framework in the dia structure
of [Cu(ADI)2](NO3) is shown for clarity. Color code: Ni, blue; C, gray; N, green.

structure to a net of vertices that are linked by edges. We exercise this for the
structure of [Cu(ADI)2](NO3) with dia topology. Figure 1.7a shows a fragment
of the [Cu(ADI)2](NO3) structure [16c]. ADI units are 2-connected linkers
while the copper atoms are 4-connected nodes as shown in Figure 1.7b in the
simplified net. An even clearer representation can be achieved when adding
the corresponding polyhedra or vertex figures to give the augmented net
dia-a (Figure 1.7c). Linking metal centers through organic struts leads to the
formation of frameworks encompassing open space. Within such structures this
open space is sometimes filled with additional frameworks that are identical in
both composition and topology. These are mechanically entangled rather than
chemically linked, a phenomenon referred to as interpenetration [18]. A more
detailed discussion on the topic of topology can be found in Chapter 18.

In an attempt to synthesize a radical anion salt of 2,5-dimethyl-N ,N-
dicyanoquinonediimine, Siegfried F. Hünig and coworkers prepared another
coordination network of dia topology [19]. Despite the fact that its crystal struc-
ture was not discussed in detail, Akiko Kobayashi and coworkers synthesized
isostructural forms using functionalized linkers bearing methoxy-, chloro-,
and bromo-substituents, which have the same sevenfold interpenetrated struc-
ture [20]. Adding functionality onto the backbone of such networks, without
changing the overall metrics and underlying topology, brought the molecular
precision of organic chemistry into the realm of extended solids.
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Figure 1.7 (a) Simplification of the crystal structure of [Cu(ADI)2](NO3) adopting a
diamond-like structure. (b) Representation of building units with two points of extension as
edges and building units with four points of extensions as nodes yields the underlying dia
topology. (c) Representing the vertices as their corresponding vertex figures (polyhedra) yields
the augmented dia-a net in its highest symmetry embedding. Tetrahedral nodes are shown in
blue, edges in gray. One adamantane cage is shown in (a) and highlighted in orange in (b)
and (c).

The immense diversity of theoretically accessible coordination network struc-
tures made in a manner akin to the methods reported by Saito et al. inevitably
led to the necessity of deploying generally applicable design principles for this
class of materials. Such principles were already well developed in the field
of crystal engineering, where chemists seek to understand weak interactions
(C—H· · ·A, hydrogen bonds, halogen bonds, π-interactions, and van der Waals
forces) between individual molecules in molecular solids in order to engineer
their arrangement within the crystal [21]. Since coordination networks are also
held together by rather weak non-covalent interactions (Metal–N–donor inter-
actions), the deliberate design of coordination networks is often considered to
fall under the rubric of crystal engineering [22]. In this context, Richard Robson
and Bernard Hoskins recognized that Wells principles of nodes and links as
outlined earlier can be applied to predict structures that will result from linking
of molecular building units of a given geometry and connectivity4 [24]. They
demonstrated that this approach facilitates the deliberate design of coordination
networks with predetermined structures. For example, linking tetrahedral Cu+

single metal nodes and 4,4′,4′′,4′′′-tetracyanotetraphenylmethane (TCTPM)
results in a non-interpenetrated coordination network of the chemical formula

4 In this paper Hoskins and Robson also report the designed synthesis of Zn(CN)2 and Cd(CN)2,
which previously had been synthesized and described (1941 and 1945, respectively) by Zhdanov
et al. and whose ability to form clathrates was reported by Iwamoto et al. in 1988 [23].
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Figure 1.8 Crystal structure of the cationic coordination network [Cu(TCTPM)](BF4)
(TCTPM = 4,4′,4′′,4′′′ tetracyanotetraphenylmethane). The network has a dia topology and is
composed of tetrahedral Cu+ single metal nodes and tetrahedral TCTPM linkers. All counter
ions, solvent molecules, and hydrogen atoms are omitted for clarity. Color code: Cu, blue; C,
gray; N, green.

[Cu(TCTPM)](BF4) and dia topology (Figure 1.8). The adamantane cages of this
structure have an estimated pore volume of 700 Å3 and are occupied by BF−

4 ions
that can be exchanged with PF−

6 , as evidenced by infrared spectroscopy, while
the crystallinity of the material is retained.

It was shown that the use of elongated linkers such as 1,4-dicyanobenzene,
4,4′-dipyridyl, and 2,5-dimethylpyrazine yields isostructural analogs with differ-
ent degrees of interpenetration due to the different pore sizes of the resulting
networks [25]. In addition to changing the metrics of the building units their gen-
eral geometry and number of points of extension can be altered to yield networks
of different structure types.

The combination of tetrahedral and square planar building units leads to struc-
tures based on the platinum sulfide (pts) net. In the first such example, Cu+ ions
were linked with Pt(CN)2−

4 units. Here, the Cu+ and the Pt(CN)2−
4 units replace

the tetrahedral S2− and square planar Pt2+ ions in the structure of the PtS min-
eral, respectively [26]. The resulting anionic framework has the chemical formula
[CuPt(CN)4](NMe4) and the pores are filled with (NMe4)+ counter ions. Control
over the metrics of the system was demonstrated by deliberate expansion of the
pore size by replacing the inorganic Pt(CN)2−

4 units with porphyrin-based square
building units (Figure 1.9). Here, a cyanophenyl-functionalized porphyrin (TCP)
was used as the square planar unit to give a twofold interpenetrated structure of
the chemical formula [Cu(Cu-TCP)](BF4) [27]. It was then shown that interpene-
tration can be avoided by using a pyridyl-functionalized porphyrin linker (TPP).
Linking TPP with tetrahedral Cu+ single metal nodes gives a non-interpenetrated
structure of the formula [Cu(Cu-TPP)](BF4). This finding is rationalized by the
smaller internal pore space of the network constructed from TPP compared to
that constructed from TCP linkers [27].
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Figure 1.9 Comparison of two coordination networks built from tetrahedral Cu+ and square
planar porphyrin-based linkers, crystallizing in the pts topology. (a) A twofold interpenetrated
framework [Cu(Cu-TCP)](BF4) is obtained from cyanophenyl-functionalized porphyrin (TCP)
and Cu+ ions. (b) Replacing the terminal benzonitrile coordinating groups by pyridine groups
(TPP = tetrapyridyl-functionalized porphyrin) prevents interpenetration and gives rise to the
non-interpenetrated framework [Cu(Cu-TPP)](BF4). All hydrogen atoms, counter ions, and
solvent molecules are omitted for clarity. The interpenetrating net in (a) is shown in gray. Color
code: Cu+/Cu2+, blue; C, gray; N, green; square planar porphyrin building units are highlighted
as orange polygons. The crystal structure drawings are based on modified datasets where the
porphyrin rings are fixed in a planar shape.

The use of geometric design principles for coordination networks and the
molecular building unit approach signified an important evolution in the syn-
thesis of extended structures. The resulting level of synthetic control was largely
unknown prior to coordination networks. It is however worthy of note that at
this point only a hand full of structure types was reported, most of which suffered
from interpenetration and lack of accessibility of their internal pore space.

In 1990, Makoto Fujita used ethylenediamine-capped Pd2+ units to
make a square-shaped polynuclear macrocyclic complex of composition
[(en)Pd(BIPY)(NO3)8]4 (en = ethylendiamine, BIPY = 4,4′-bipyridine) [28].
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Figure 1.10 Molecular square synthesized by reacting a capped Pd2+ complex with BIPY.
Using Cd2+ ions results in the formation of an extended square grid (sql) structure of formula
Cd(BIPY)2(NO3)2. Dichlorobenzene guest molecules reside in the square channels formed by
the eclipsed stacking of the sql layers of the network. All guest molecules and hydrogens are
omitted for clarity. Color code: Pd and Cd, blue; C, gray; N, green; O, red.

When the capped Pd2+ units in the synthesis of this macrocycle are replaced by
uncapped Cd2+ ions an extended 2D square grid (sql) is formed (Figure 1.10) [29].

In 1995, two extended coordination networks related to M(BIPY)2 were pub-
lished, both of which are essential in the development of the field of MOFs. In fact,
the term metal-organic framework was first coined in one of these contributions,
in which Omar M. Yaghi and coworkers reported the solvothermal synthesis of
[Cu(BIPY)1.5](NO3) (Figure 1.11) [30]. The term metal-organic framework was
originally used to describe the overall composition (metal ion and organic) and
character of the structure (framework). Later on, the term MOF was more mean-
ingfully used to describe additional structural attributes (rigidity) and properties
(porosity).5 The structure of [Cu(BIPY)1.5](NO3) is built from trigonal planar Cu+

5 Currently, the IUPAC definition of a MOF is: “A coordination network with organic ligands
containing potential voids.”
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Figure 1.11 3D framework of [Cu(BIPY)1.5](NO3) based on trigonal planar Cu+ single metal
nodes connected by linear BIPY linkers. The twofold interpenetrated structure has a ths
topology. Only one cage is shown to illustrate the connectivity and orientation of the
individual building units within the ths net. Interpenetrating frameworks, solvent molecules,
counter ions residing in the channels, and all hydrogen atoms are omitted for clarity. Color
code: Cu, blue; C, gray; N, green.

Figure 1.12 Single crystal structure of Zn(BIPY)2(SiF6) with view along the c-direction.
Octahedrally coordinated Zn2+ ions are joined by BIPY linkers to form 2D sql layers. These
layers are pillared by SiF6

2− resulting in the assembly of a charge neutral 3D pcu network, with
channels of 8× 8 Å running along the crystallographic c-axis. All hydrogen atoms and solvent
molecules are omitted for clarity. Color code: Zn, blue; Si, orange; F, purple; C, gray; N, green.
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centers connected by linear BIPY linkers to form an interpenetrated 3D network
with an underlying ThSi2 (ths) topology. The NO−

3 counter ions reside in the
8× 6 Å and 4× 5 Å channels of the structure and they can be readily exchanged
for simple inorganic anions such as BF−

4 or SO2−
4 with full retention of the over-

all structure. The solvothermal synthesis of this material resembles the synthetic
routes used in zeolite chemistry and this approach has since proven fruitful for
the synthesis of many MOFs.

That same year, Michael J. Zaworotko and coworker reported a coordination
network of formula Zn(BIPY)2SiF6 having a square grid of octahedral Zn2+

ions linked by BIPY (Figure 1.12) [31]. These layers are pillared by SiF−
6 to form

a charge neutral non-interpenetrated cubic primitive structure with 8× 8 Å
channels running along the crystallographic c-direction. The potential empty
space in this network represents 50% of the unit cell volume. However, the struc-
ture of Zn(BIPY)2SiF6 collapses when the guest molecules are removed from
its pores.

1.6 Coordination Networks with Charged Linkers

While the aforementioned design principles can be used to construct a wide
variety of coordination networks through the judicious choice of metal ions and
organic linkers, the resulting materials generally suffer from inherent architec-
tural and chemical instability. To overcome these limitations, charged chelating
linkers were introduced. The use of such linkers has two important advantages:
increased bond strength results in higher thermal and chemical stability and the
charge on the linker can balance the charge of the cationic metal centers to cir-
cumvent the formation of ionic networks and avoid the need for counter ions fill-
ing the pores. This was first illustrated in 1995 with the synthesis of Co(BTC)(Py)2
(BTC, benzene-tricarboxylate). The structure of Co(BTC)(Py)2 consists of alter-
nating stacked layers of pyridine and Co-BTC [32]. within the Co-BTC layers,
each Co3+ ion is coordinated by three carboxylates of neighboring BTC linkers
(Figure 1.13). One of the BTCs is coordinated to three metal centers in a bidentate
fashion, while the other BTCs coordinate to three metal centers in a monodentate
fashion. The pyridine ligands between adjacent layers provide for an interlayer
distance of 7 Å. Co(BTC)(Py)2 is exceptionally stable for an extended network
material, decomposing only at temperatures above 350 ∘C. As expected, owing
to the strong bonds between the metal centers and the charged BTC linkers,
removal of the pyridine molecules does not lead to the collapse of the struc-
ture. The Co-BTC layers remain intact and after the pyridine guest molecules
have been removed thermally, they can selectively be re-inserted between the
layers, thereby regenerating the original structure as evidenced by powder X-ray
diffraction.
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Figure 1.13 Linking Co3+ ions and BTC results in the formation of a layered 2D structure of
formula Co(BTC)(Py)2. The layers are constructed from square planar Co3+ and trigonal planar
BTC linkers and are stacked along the crystallographic c-axis. The individual layers are
separated by pyridine ligands coordinated to give Co3+ centers to given an overall octahedral
coordination geometry. The pyridine guest molecules can be removed thermally and
reinserted, regenerating the original structure of MOF-1 of the original structure of MOF-1.
Color code: Co, blue; C, gray; N, green; O, red.

1.7 Introduction of Secondary Building Units
and Permanent Porosity

To further increase the stability of metal-organic extended structures, polynu-
clear clusters, commonly referred to as secondary building units (SBUs), were
sought as nodes to replace the single metal-ion nodes in coordination networks.
The SBUs offered several advantages toward realizing more robust structures:
the chelation of metal ions to make polynuclear clusters provided for rigidity
and directionality while the charge on the linker led to increased bond strength
and the formation of neutral frameworks. In combination, these factors were
expected to contribute greatly to the overall stability of the resulting material.
This concept was realized in 1998 when the synthesis and gas sorption proper-
ties of the first metal-organic framework, MOF-2 Zn(BDC)(H2O) were reported
(Figure 1.14). MOF-2 has a neutral framework structure and is synthesized by
slow vapor diffusion of a mixture of trimethylamine/toluene into a DMF/toluene
solution of Zn(NO3)2⋅6H2O and benzenedicarboxylic acid (H2BDC) [33]. The
layered structure of MOF-2 is built from dimeric Zn2(—COO)4 paddle wheel
SBUs (rather than single metal nodes) that are linked by BDC struts to form a
square grid (sql).

The increased stability imparted by the paddle wheel SBUs made it possible
to remove all solvent molecules from the pores without collapsing the structure
of MOF-2, leading to permanent microporosity as evidenced by reversible
nitrogen gas adsorption at 77 K. The proof of permanent porosity in this MOF
signaled a turning point in the chemistry of extended metal-organic solids and
led to the use of the term MOF to emphasize their distinct stability and porosity.
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Figure 1.14 Crystal structure of MOF-2 viewed along the crystallographic a-axis, emphasizing
the trapezoidal channels. Dinuclear Cu2+ paddle wheel SBUs are connected by ditopic BDC
linkers to form layers of sql topology. The architecturally stable combination of paddle wheel
SBUs and charged chelating linkers endow MOF-2 with permanent porosity. All hydrogen
atoms and guest molecules are omitted for clarity. Color code: Cu, blue; C, gray; N, green; O,
red.

Furthermore, this development led to extensive work on combining metals with
carboxylates and other charged chelating linkers to give crystalline frameworks
with SBUs as nodes. The term MOF has been overwhelmingly applied to
distinguish such structures and henceforth we will adopt this terminology. The
discovery of permanent porosity in MOF-2 generated interest in the further
development of MOFs as it indicated that it is possible to make a wide range of
2D and 3D MOFs by combining different inorganic SBUs and organic linkers.

1.8 Extending MOF Chemistry to 3D Structures

The inorganic SBUs are polynuclear clusters in which the positions of the metal
ions are locked in place by the binding groups of the linkers (in this book mainly
carboxylates) as exemplified by the di-nuclear M2(CH3COO)4 (M2+ = Cu, Zn)
paddle wheel complex [34]. Their geometry and connectivity can be varied in
order to allow for the formation of a variety of different MOF structures. These
features, along with rigidity, and definitive directionality and connectivity facil-
itate the possibility for reticular synthesis and for the design of new, rigid, and
permanently porous frameworks adopting a targeted structure. The synthetic and
structural chemistry of polynuclear metal carboxylate clusters was well devel-
oped early on and many of their structures were solved soon after the discovery
of X-ray diffraction by crystals [35]. As a matter of fact, the structure of the acetate
capped paddle wheel clusters, as is found in the structure of MOF-2, was deter-
mined as early as 1953 [35g]. Based on the presumption that the replacement of
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the capping acetate ligands with multifunctional organic molecules promotes the
formation of open extended framework structures, the idea of employing other
carboxylate clusters as SBUs in the formation of MOFs emerged. First attempts to
extend the chemistry of MOFs into 3D involved the use of the basic zinc acetate,
a tetra-nuclear carboxylate cluster coordinated by six acetates in an octahedral
fashion, as an SBU [35f].

1.8.1 Targeted Synthesis of MOF-5

It was known by that time that basic zinc acetate Zn4O(CH3COO)6 can be pre-
pared by adding small amounts of hydrogen peroxide to a solution of a zinc salt
in acetic acid [36]. This facilitates the formation of O2−, which lies at the center of
the resulting polynuclear cluster [37]. The knowledge of both, the synthesis route
affording the molecular Zn4O(CH3COO)6 cluster as well as that employed in the
preparation of MOF-2, allowed for the deduction of a synthetic procedure tar-
geting a 3D MOF based on octahedral Zn4O(—COO)6 SBUs and ditopic linear
linkers.

One of the lessons learned from the synthesis of MOF-2 was that precise syn-
thetic control is required in order to avoid the rapid precipitation of ill-defined
amorphous powders as a result of the low reversibility of the formation of strong
metal–carboxylate bonds. This is in stark contrast to structures held together
by relatively weak metal–N–donor bonds (e.g. bipyridines and dinitriles) whose
crystallization is relatively straightforward owing to the high reversibility and
facile error correction during crystallization. In the case of MOF-2, the formation
of a crystalline material was achieved by slow diffusion of a base (trimethylamine)
into a solution of a mixture of the metal salt (Zn(NO3)3⋅6H2O) and the organic
linker H2BDC (benzenedicarboxylic acid). Slow deprotonation of the carboxylic
acid groups of the linker slowed down the formation of MOF-2 and allowed for
error correction and consequently the crystallization of MOF-2. This strategy
was largely retained in the synthesis of MOF-5 and only modified by adding a
small amount of hydrogen peroxide to a mixture of Zn(NO3)2⋅4H2O and H2BDC
in analogy to the synthesis of the molecular Zn4O(CH3COO)6 cluster, to favor
the formation Zn4O(—COO)6 SBUs over the previously obtained Zn2 (—COO)4
paddle wheel units.

Despite the rational approach to the synthesis of MOF-5, the bulk material that
collected on the bottom of the vial turned out to be MOF-2.6 One of the authors
recalls that following this procedure, his student observed a small amount of
cube-shaped crystals, having a morphology different from the main phase col-
lecting at the bottom of the reaction vessel. These cubic crystals were floating at
the meniscus of the mother liquor and adhered to the sides of the flask in the

6 Solvothermal methods to prepare MOF-5 in high yield were established in the following years
where the slow diffusion of base into the reaction mixture was replaced by using DMF
(dimethylformamide) or DEF (diethylformamide), which slowly decompose upon heating to release
small amounts of dimethyl- or diethylamine base. It was also shown that the use of hydrogen
peroxide is not needed since O2− ions can be formed from trace amounts of water in the reaction
mixture. Typical reaction temperatures of 80–100 ∘C as well as the applicability of this route to
different metal salts were reported [38].
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same vicinity. The comparison of the powder X-ray diffraction pattern of MOF-2
and that of these cubic crystals confirmed the presence of two structurally distinct
compounds. However, when attempting to mount these cubic crystals on a single
crystal X-ray diffractometer, the formation of cracks and the loss of transparency
were observed, indicating the loss of mono-crystallinity and thus initially pre-
cluding their structural characterization. It proved difficult to handle this material
because the crystals degraded upon loss of solvent by evaporation after they were
removed from the mother liquor. Eventually, the structure of MOF-5 was deter-
mined by keeping the crystals in the mother liquor and sealing them in a capillary
prior to examination by single crystal X-ray diffraction.

1.8.2 Structure of MOF-5

The synthesis, characterization, and structure of MOF-5, [Zn4O(BDC)3](DMF)x
was reported in 1999 by Yaghi and coworkers.7 It was shown that the struc-
ture of MOF-5 is indeed composed of octahedral Zn4O(—COO)6 SBUs, consist-
ing of four tetrahedral ZnO4 units sharing a common vertex, joined by ditopic
BDC linkers to give a 3D framework structure of pcu topology (Figure 1.15). The
large size (8.9 Å) and high connectivity of the SBUs in combination with the long
BDC linker (6.9 Å) provide for an open porous structure with alternating inter-
connected pores of 15.1 and 11.0 Å in diameter, and a pore aperture of 8.0 Å.

Figure 1.15 Crystal structure of MOF-5, constructed from octahedral Zn4O(—COO)6 SBUs and
linear ditopic BDC linkers. The resulting primitive cubic net (pcu) has alternating large (15.1 Å
diameter) and small (11.0 Å diameter) pores whose different size is a result of the orientation of
the phenyl units of the BDC linkers with respect to the center of the pore. Only the large pore
is shown for clarity. The yellow sphere indicates the largest sphere that can be placed inside
the pore without coming within the van der Waals radius of any framework atom. All hydrogen
atoms are omitted for clarity. Color code: Zn, blue; C, gray; O, red.

7 The name MOF-5 was chosen in analogy to the well-known zeolite ZMS-5.
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These large cavities make up 61% of the unit cell volume and are filled with solvent
molecules (DMF) in the as-synthesized material. One of the most striking fea-
tures of the MOF-5 structure is that the pores have no walls. This provides for
an unprecedented openness of the structure that allows guest molecules to move
with great facility without clogging the pores. In contrast, the pores in more tra-
ditional porous solids such as zeolites have walls and diffusion can be subject
to complications related to blocked pores. The structure of MOF-5 is shown in
Figure 1.15 and the open space within this structure is illustrated by a yellow
sphere that represents the largest sphere that can occupy the pore without pene-
trating the van der Waals radius of any framework atom. We will use these spheres
to highlight the accessible open space within the structures of all porous frame-
works discussed throughout this book.

Among the very first questions to be addressed about MOF-5 was whether the
guests filling the pores could be removed without collapsing the overall structure
and whether, like MOF-2, MOF-5 is stable enough to support permanent poros-
ity. Before addressing this issue, we digress slightly to enumerate the different
types of stability relevant to this and other MOFs that follow.

1.8.3 Stability of Framework Structures

Chemical stability is the ability of a given material to withstand chemical
treatment without any significant change in its structure. This can be evaluated
by subjecting a material to different liquid or gaseous chemicals, followed by
X-ray diffraction analysis to verify that the structure of the material has not been
altered or degraded.

Thermal stability is the ability of a given material to withstand thermal treat-
ment without any significant change in its structure. This can often be assessed
by thermogravimetric analysis or differential-scanning-calorimetry where, upon
heating the sample, an apparent mass loss or a thermal effect (exothermic or
endothermic) is recorded, indicating decomposition and changes in the struc-
ture. Additionally, X-ray diffraction studies performed on the material after or
during thermal treatment can provide information on whether the structure has
been retained.

Mechanical stability is the ability of a given material to withstand external
forces. Methods to determine the mechanical stability of MOFs are similar
to those used in materials science such as pressurization (compressibility),
nano-indentation (Young’s modulus) or determination of the tensile strength to
name a few.

Architectural stability is the ability of a framework material to retain its struc-
tural integrity in the absence of guest molecules. It can be proven by evacuating
the solvent from the pores of a MOF and subsequent confirmation of its crystal
structure and porosity.

1.8.4 Activation of MOF-5

To realize the full potential of MOF-5, the challenge of removing guest molecules
to yield an open framework was addressed. Initial attempts to evaporate the sol-
vent guest molecules from the crystal caused cracking and a concomitant partial
loss of porosity that were ascribed to the strong mechanical forces acting on the
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framework upon solvent removal. These forces are proportional to the surface
tension of the solvent in the pores and the extent of the “adhesive forces” between
the guest molecules and the inner surface of the MOF. To facilitate the evacua-
tion of the material, the highly mobile guest molecules present in the pores of the
as-synthesized material were fully exchanged with chloroform (CHCl3), which
upon removal “puts less stress on the framework.” The complete removal of all
guest molecules from the pores of MOF-5 was eventually achieved by evacua-
tion of the solvent exchanged material at 5× 10−5 Torr and room temperature
for three hours with full retention of the crystallinity of the architecturally stable
framework [37]. The process of removing volatile guest molecules from the pores
of MOFs is commonly referred to as “activation.”

Since no change in morphology or transparency was observed upon activation
of MOF-5, single crystal X-ray diffraction studies of the activated material were
carried out. This is usually difficult because porous solid-state materials often
lose their monocrystallinity upon removal of guest molecules. However, in
this case the unit cell parameters and atomic positions determined from these
measurements were shown to be almost identical to those of the as-synthesized
material. In fact, the remaining electron density within the pores was signifi-
cantly lower than for the as-synthesized material, providing further proof that
all guest molecules had been removed and that MOF-5 is indeed permanently
porous8 [37].

1.8.5 Permanent Porosity of MOF-5

The next step in proving the permanent porosity of MOF-5 was the determination
of its internal surface area. For this purpose, nitrogen adsorption experiments
at 77 K (as recommended by IUPAC) were performed (Figure 1.16). These
measurements allow for the determination of both pore size and surface area.
The pore volume calculated from these measurements (0.54–0.61 cm3 cm−3)
was higher than those reported for the best performing zeolites at that time
(up to 0.47 cm3 cm−3) [37]. With a value of 2900 m2 g−1, the Langmuir surface
area reported in this contribution surpassed by far that of all zeolites, activated
carbons, and other porous materials.9 In later contributions, even higher surface
areas up to 3800 m2 g−1 were reported as better methods for the activation of
MOFs were developed [38a].

The combination of a 6-connected Zn4O(—COO)6 cluster and charged bridg-
ing carboxylate linkers suggest that the resulting framework should exhibit high
thermal stability, and indeed, neither the morphology nor the crystallinity of the
fully activated MOF-5 was affected by heating the material in dry air at 300 ∘C for
24 hours. This was further evidenced by subsequent single crystal X-ray diffrac-
tion studies carried out on MOF-5 samples that underwent this procedure [37].
Furthermore, MOF-5 was shown to be stable at temperatures up to 400 ∘C under
vacuum. The structural degradation of MOF-5 under atmospheric conditions can

8 A material is defined as permanently porous if it is proven to be stable upon removal of the
guests from the pores without collapsing. This is measured by nitrogen gas adsorption experiments
(at 77 K relative pressures between 0 and 1), the gold standard for evaluation of porosity.
9 Ulrich Müller, a research director at BASF SE, recalls his reaction when he came across this study
on MOF-5 and stated: “That number was so unbelievably high, I thought it had to be a misprint.”
Only after having repeated the measurement himself was he convinced [39].
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Figure 1.16 Nitrogen adsorption isotherm measured at 77 K. A pore volume of
0.54–0.61 cm3 cm−3 and a Langmuir surface area of 2900 m2 g−1 have been calculated from
this measurement. The fact that the desorption branch perfectly traces the adsorption branch
highlights the outstanding architectural and mechanical stability of MOF-5 and gives further
evidence of its permanent porosity.

therefore be ascribed to humidity in the air rather than to oxygen. This is further
supported by the fact that treating MOF-5 with dry solvents or dry air has no
effect on its crystallinity and surface area, whereas treatment with humid air or
moist solvents results in the slow decomposition of MOF-5 and the formation of
a nonporous product [38a].

1.8.6 Architectural Stability of MOF-5

It is worthy of note, that when MOF-5 was first reported, there were many
doubters as no one expected such an open structure, composed of largely open
space, to be architecturally and thermally stable. Many expected the framework
to collapse onto itself once the solvent guests are removed. To gain a deeper
understanding of the key factors rendering MOF-5 architecturally stable, it
is helpful to take a closer look at its structure. The cubic structure of MOF-5
(Figure 1.17a) can be deconstructed into the basic pcu net, that is, a framework
built from single atom vertices connected by edges (Figure 1.17b). When a shear
force is applied to this basic pcu net little resistance is expected. This however
does not hold true for the actual crystal structure of MOF-5. In its crystal struc-
ture, the vertices of the basic pcu net are cationic zinc-oxide clusters that have an
envelope10 of truncated tetrahedral shape. These vertices are joined together by
the rigid planar BDC linkers, which can be represented by a planar flat envelope
(Figure 1.17c). Each set of linkers located on opposing sides of the truncated

10 The envelope representation of individual building units in carboxylate MOFs are geometrical
shapes identical to those obtained when wrapping the respective building units in paper (thus
envelope) while making sure, that all oxygen atoms of the carboxylate groups are touching the paper.
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Figure 1.17 (a) Crystal structure of MOF-5, the two differently sized pores are highlighted by
yellow (large pore, 15.1 Å diameter) and orange spheres (small pore, 11.0 Å), respectively. (b)
Simplified representation of the basic pcu net of MOF-5. SBUs are replaced by single atom
vertices and the BDC linkers are replaced by edges. (c) Envelope representation of the
octahedral Zn4O(—COO)6 SBUs and the BDC linker as truncated tetrahedra and rectangles,
respectively. (d) Envelope representation of the extended framework structure of MOF-5,
highlighting its architectural stability that originates from the mutually perpendicular
arrangement of BDC linkers around the SBUs. Color code: Zn, blue tetrahedra; C, gray; O, red. In
the topology and envelope representation, nodes are shown in red, linkers in blue.

tetrahedron has a dihedral angle of 90∘; i.e. they are rotated by 90∘ with respect
to each other. Linking these two building units into an extended 3D framework
results in an inherently rigid structure, held together by mutually perpendicular
hinges (Figure 1.17d). This arrangement provides for the high architectural sta-
bility needed to allow for the activation and support of permanent porosity. The
high thermal stability of MOF-5 on the other hand is attributed to the fact that
the backbone of MOF-5 is composed entirely of strong bonds (Zn—O, C—O, and
C—C), all of which are significantly stronger and therefore thermodynamically
more stable than those in coordination networks (M–N–donor) [40].

1.9 Summary

In this chapter we have outlined the history of the development of MOFs. We
showed the transition from 0D amine and nitrile-based coordination compounds
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into 2D and 3D coordination networks and highlighted the key points in making
robust, chemically, mechanically, and architecturally stable compounds that sup-
port permanent porosity: (i) The use of charged chelating linker and (ii) the SBU
approach. In this way, the need for counter ions that reside in the pores of the
framework can be avoided, and the rigidity of the building units – organic linker
and SBU – renders the framework architecturally stable. We showed that differ-
ent SBUs can be targeted in a rational manner, thus presenting the prospect of the
designed synthesis of a vast variety of possible framework structures. In the fol-
lowing chapters we will consider the porosity of such frameworks in more detail.
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