ChemComm

This article is part of the

Hydrogen web- based thematic issue

showcasing the latest research on all aspects of hydrogen

generation, storage and activation

Guest editors: Professors Ferdi Schüth, Douglas Stephan, Daniel DuBois and Mary DuBois

All articles in this issue are gathered together online at <u>www.rsc.org/chemcomm/hydrogen</u>

Azulene based metal-organic frameworks for strong adsorption of H₂†‡

Samir Barman,^a Hiroyasu Furukawa,^{*b} Olivier Blacque,^a Koushik Venkatesan,^a Omar M. Yaghi^b and Heinz Berke^{*a}

Received 15th July 2010, Accepted 3rd September 2010 DOI: 10.1039/c0cc02589e

Two Zn MOFs, MOF-645 and MOF-646, comprised of polarized 1,3-azulenedicarboxylate were synthesized. The guest free MOF-646 showed strong MOF-H₂ interactions (7.8–6.8 kJ mol⁻¹), which revealed the significant impact of internally polarized azulene backbone to stabilized H₂ molecules in the framework.

Due to the high fugacity coefficient of hydrogen, a dense storage form in a fuel cell vehicle has become important in the effort to achieve the DOE (US) targets.¹ In addition to the large storage space, implementation of the large adsorption enthalpy of H₂ (ca. 15 kJ mol⁻¹) is a key issue in building practical storage systems.² Because of the discovery of high surface area metal-organic frameworks (MOFs), it is possible to store more than 10 wt% of H_2 at 77 K,³ but due to the very weak interactions between H₂ and the MOF framework, their storage capacity is not significant at 298 K.¹ Towards this end, creation of coordinatively unsaturated metal centers⁴ and doping of MOFs with alkali metals⁵ have been proposed. However, once these metal sites are blocked by H₂ molecules, the adsorption enthalpy should decrease drastically, which leads to another problem; i.e., that the delivery amount of H_2 may not be large. Therefore, we believe that creation of MOFs with high charge density is another way to realize a high adsorption enthalpy with a wide loading amount of H₂.⁶

Azulenes constitute dipolar aromatic systems (Scheme 1) and we anticipated that azulenes contained in a MOF could contribute to the build up of coulombic fields required for the polarization and polarized binding of H_2 .

The polarized binding state of H_2 provides considerable stabilization depending on the size of the electrical field.⁷ It was calculated that the H_2 molecules over an azulene ring system would have higher interaction energy in comparison to simple benzene and isomeric naphthalene systems owing to its internal charge separation.⁸ We believe that in MOFs the electrical field gradients of an appropriately arranged azulene unit should be cooperative and thus lead to an enhancement of polarized binding of H₂. Herein we report an alternate approach towards enhancing polarizability of the frameworks using internally polarized angular 1,3-azulenedicarboxylic acid $(C_{2v}$ symmetry).⁹ Specifically, we report the synthesis and characterization of two new MOFs,§ MOF-645 [Zn₅(OH)₂(L)₄] (L = 1,3-azulenedicarboxylate) and MOF-646 [Zn₄O(L)₃], and describe the H₂ uptake behaviors for guest free MOF-646.

Single crystals of MOF-645 were obtained by heating H₂L and zinc nitrate in a mixture of DMF/ EtOH/ H_2O (1.0:0.25:0.25 mL) at 90 °C (DMF = N,N-dimethylformamide).¹⁰ The single crystal X-ray diffraction (SXRD) analysis¶ reveals that the structure of MOF-645 has a threedimensional (3D) framework, which is constructed from unique pentanuclear zinc(II) clusters: Zn₅(µ₃-OH)₂(O₂C)₈(DMF)(H₂O) (Fig. 1a and b). Two Zn triangles, each with a central μ_3 -OH group, share a central Zn corner. The central Zn atom is bridged to each of the other Zn atoms by a carboxylate.¹¹ The edges opposite the central Zn atom are each bridged by a carboxylate. Half of the edge Zn atoms have single chelating bidentate carboxylate,¹¹ respectively, while the other Zn atoms are coordinated to either DMF or a water molecule. In the overall crystal structure, these SBUs are linked to produce a bcu net (Fig. 1c).^{12,13} If occluded and coordinated guests are removed, accessible void space is estimated to be 41%. However, in our attempt, the guest free form of MOF-645 did not take up N₂ at 77 K presumably due to structural decomposition as evidenced by the X-ray powder diffraction (PXRD) pattern.¹³ Therefore, we strove to prepare another MOF with the same ligand L.

Synthesis of MOF-646 has been achieved by carrying out a solvothermal reaction between H_2L and zinc acetate in DMF.¹⁰ From SXRD analysis (Fig. 1e), each Zn₄O unit is connected by ligand L. The Zn₄O unit is a slightly distorted tetrahedron and two DMF molecules are coordinated to one of the four Zn ions in the unit (Fig. 1d).^{13,14} Although the chemical formula is the same as for other IRMOFs [Zn₄O(link)₃], the overall connectivity (**lcy**, Fig. 1f) is different from them (**pcu**) because of the bent ligand. The variation in the underlying topology from **pcu** to **lcy** could result in a

Scheme 1 Resonance form of 1,3-azulenedicarboxylate emphasizing its polar nature.

^a Department of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland. E-mail: hberke@aci.uzh.ch; Fax: (+41) 44-635-6802

^b Center for Reticular Chemistry, Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA. E-mail: furukawa@chem.ucla.edu

[†] This article is part of a ChemComm 'Hydrogen' web-based themed issue.

 $[\]ddagger$ Electronic supplementary information (ESI) available: Full synthetic procedures and characterization data including TGA, IR, PXRD. N₂ isotherms and single crystal X-ray diffraction data. CCDC 771570–771571. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c0cc02589e

Fig. 1 $Zn_5(\mu_3-OH)_2(L)_8$ SBU with Zn shown as polyhedra (a) and view of crystalline framework of MOF-645 (b) in a **bcu** net (c). $Zn_4(\mu_4-O)(L)_6(DMF)_2$ SBU with Zn shown as polyhedra (d) and view of the single X-ray crystal structure of MOF-646 (e) in an **lcy** net (f). Atom colors: Zn, blue tetrahedra; O, red; C, black; N, green; all hydrogen atoms and terminal ligands on the SBUs except (d) are omitted for clarity.

smaller pore size distribution (<7 Å) which should allow an extensive overlap of attractive potential of the pore wall and could mitigate the entropic gain at a higher temperature.¹⁵

Solvent guests in the as-synthesized form of MOF-646 were removed by first immersing the crystals in chloroform and then evacuating at 45 °C for 24 h.¹³ The PXRD pattern of activated MOF-646 confirmed that it retained crystallinity.¹³ Elemental microanalysis of the activated sample is consistent with the guest free material of $[Zn_4O(L)_3]$. The removal of coordinated DMF may affirm the nature of the open metal site in the Zn₄O unit.

The permanent porosity of the activated MOF-646 was demonstrated by measuring the Ar gas adsorption at 87 K (Fig. 2a). MOF-646 takes up Ar in the low pressure region which is indicative of the presence of microporosity. A small step at $P/P_0 = 0.02$ is probably due to either the pore blocking effect or reorientation of adsorbed Ar molecules. The Langmuir and BET surface areas of activated MOF-646 are estimated to be 1130 m² g⁻¹ and 925 m² g⁻¹, respectively.¹⁶ To evaluate the pore size distribution of MOF-646, the Ar isotherm was analyzed using nonlocal density functional theory (NLDFT) based on a zeolite/silica model containing cylindrical pores.¹⁷ The distribution calculated by fitting the MOF-646 adsorption data (<6 Å) revealed the pore width is within the realm of an ultramicropore.

Fig. 2 (a) Ar isotherm for activated MOF-646 measured at 87 K. Inset: pore size distribution (histogram) for activated MOF-646, calculated from a NLDFT fit to the Ar adsorption data at 87 K.¹³ (b) H_2 isotherms for activated MOF-646 measured at 77 (red) and 87 K (olive). Inset: the coverage dependencies of adsorption enthalpies of H_2 for activated MOF-646. Filled and open symbols for (a) and (b) represent adsorption and desorption branches respectively.

In conjunction with the polarized pore wall and the small pore size distribution of MOF-646, we recorded the H_2 adsorption isotherms on the activated material. In spite of relatively high crystal density (1.19 g cm⁻³), activated MOF-646 shows considerable H_2 uptake up to 17.5 mg g⁻¹ at 77 K and 1 bar (Fig. 2b). This gravimetric uptake outperforms MOFs with Zn₄O SBUs except for IRMOF-11 whose nets are interwoven.¹⁸ More importantly, the H_2 uptake in the volumetric unit (20.9 g L⁻¹) is approaching that of high performance MOFs having Cu open metal sites (22–24 g L⁻¹ for HKUST-1, PCN-14, and SNU-5)^{4c,h,j} measured under similar conditions.

To investigate the reason for the excellent H₂ uptake on activated MOF-646, coverage dependencies of the isosteric heat of adsorption (Q_{st}) were calculated from fits of its 77 and 87 K isotherms. As shown in Fig. 2b (inset), the Q_{st} curve is nearly flat throughout the loading range examined, which is in sharp contrast to many MOFs, especially those possessing open metal sites.^{4a,d,h,j} The estimated Q_{st} (7.8–6.8 kJ mol⁻¹) is higher than representative MOFs, such as MOF-5, MOF-177 and HKUST-1,^{3c,4c} although this is lower than MIL-101, M₃[(M₄Cl)₃(BTT)₈]₂ (M = Mn, Fe, Co, BTT³⁻ = 1,3,5-benzenetristetrazolate) analogues and other MOF materials.^{19,4a,d-f,h,j} It is worth noting that, to our best knowledge, 7.1 kJ mol⁻¹ of Q_{st} at 13 mg g⁻¹ of adsorbed H₂ is one of the highest values among physisorption media.²⁰

Downloaded by University of California - Los Angeles on 23 October 2010 Published on 27 September 2010 on http://pubs.rsc.org | doi:10.1039/C0CC02589E From the Q_{st} curve it is not possible to speculate the adsorption sites of H₂; however, if each Zn₄O unit confines 4 H₂ molecules as suggested by neutron diffraction studies,²¹ the H₂ uptake corresponds to 8.5 mg g⁻¹. Considering that the Q_{st} value does not drop off after the occupation of the relatively strong binding sites, it is presumed that the internally polarized azulene backbone is advantageous to stabilize H₂ molecules in the framework, because smaller pore size distribution should not be effective to enhance the Q_{st} (but can improve Henry's constant).

Funding from the Swiss National Science Foundation (SNSF), University of Zurich and US DOE are gratefully acknowledged.

Notes and references

§ Synthesis of MOF-645: A mixture of *N*,*N*-dimethylformamide (DMF)/ethanol/H₂O (1.00/0.25/0.25 mL) containing 1,3-azulenedicarboxylic acid (0.005 g, 2.3×10^{-5} mol) and Zn(NO₃)₂·6H₂O (0.014 g, 4.62×10^{-5} mol) was sealed in a 20-mL glass vial. The vial was heated at a constant rate $0.5 \,^{\circ}$ C min⁻¹ to 90 $^{\circ}$ C for 48 h and then cooled at a constant rate $0.1 \,^{\circ}$ C min⁻¹ to room temperature. The dark red crystals were washed with a DMF/ ethanol mixture (3 × 3 mL) to give 0.007 g (Yield: 88% based on 1,3-azulenedicarboxylic acid).

MOF-646: 1,3-Azulenedicarboxylic acid (0.010 g, 4.6×10^{-5} mol) and Zn(CH₃COO)₂·2H₂O (0.010 g, 4.62×10^{-5} mol) were combined with 2 mL of DMF and sealed in a 20-mL glass vial and sonicated for several minutes. The vial was heated at a constant rate 2.0 °C min⁻¹ to 120 °C for 20 h in a programmable oven. The vial was taken out from the oven while hot and the hexagonal plate-shaped crystals were washed with DMF (3 × 2 mL) to give 0.015 g (Yield: 80% based on 1,3-azulenedicarboxylic acid).

¶ Crystal data for MOF-645: $C_{51}H_{35}NO_{20}Zn_5 \cdot C_3H_7NO$, $M_r = 1381.85$, monoclinic, space group C2, a = 15.7939(2), b = 16.3435(1), c = 12.2880(2) Å, $\beta = 123.813(2)^\circ$, V = 2683.19(9) Å³, Z = 2, $d_{calcd} = 1.710$ Mg m⁻³, crystal size $0.33 \times 0.21 \times 0.06$ mm³, T = 153(2) K, $\lambda = 0.71073$ Å, $R_1 = 0.0285$ [$I > 2\sigma(I)$], $wR_2 = 0.0770$ (all data, 39.666 reflections), $R_{int} = 0.0259$, GOF = 1.022. Crystal data for MOF-646: $2(C_{84}H_{64}N_4O_{30}Zn_8) \cdot 5(C_3H_7NO) \cdot 4(H_2O)$, $M_r = 4702.25$, monoclinic, space group $P2_1$, a = 17.2344(6), b = 17.2237(6), c = 17.2923(7) Å, $\beta = 90.548(4)^\circ$, V = 5132.8(3) Å³, Z = 1, $d_{calcd} = 1.521$ Mg m⁻³, crystal size $0.13 \times 0.09 \times 0.05$ mm³, T = 153(2) K, $\lambda = 0.71073$ Å, $R_1 = 0.0468$ [$I > 2\sigma(I)$], $wR_2 = 0.0996$ (all data, 30.148 reflections), $R_{int} = 0.0520$, GOF = 0.843.

- (a) L. J. Murray, M. Dincă and J. R. Long, *Chem. Soc. Rev.*, 2009, 38, 1294; (b) S. Ma and H.-C. Zhou, *Chem. Commun.*, 2010, 46, 44.
 S. K. Bhatia and A. L. Myers, *Langmuir*, 2006, 22, 1688.
- 3 (a) S. S. Kaye, A. Dailly, O. M. Yaghi and J. R. Long, J. Am. Chem. Soc., 2007, **129**, 14176; (b) Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Dailly, N. R. Champness, P. Hubberstey and M. Schröder, Chem. Commun., 2009, 1025; (c) H. Furukawa, M. A. Miller and O. M. Yaghi, J. Mater. Chem., 2007, **17**, 3197; (d) H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, Science, 2010, **329**, 424.
- 4 (a) M. Dincă and J. R. Long, J. Am. Chem. Soc., 2005, 127, 9376;
 (b) B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras and O. M. Yaghi, Angew. Chem., Int. Ed., 2005, 44, 4745; (c) J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304;
 (d) M. Dincă, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann and J. R. Long, J. Am. Chem. Soc., 2006, 128, 16876; (e) M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J.-H. Lee, J.-S. Chang, S. H. Jhung and G. Férey, Angew. Chem., Int. Ed., 2006, 45, 8227; (f) M. Dincă, W. S. Han, Y. Liu, A. Dailly,

C. M. Brown and J. R. Long, Angew. Chem., Int. Ed., 2007, 46, 1419; (g) X.-S. Wang, S. Ma, P. M. Forster, D. Yuan, J. Eckert, J. J. López, B. J. Murphy, J. B. Parise and H.-C. Zhou, Angew. Chem., Int. Ed., 2008, 47, 7263; (h) Y.-G. Lee, H. R. Moon and P. Suh, Angew. Chem., Int. Ed., 2008, 47, 7741; (i) W. Zhou, H. Wu and T. Yildirim, J. Am. Chem. Soc., 2008, 130, 15268; (j) S. Ma, J. M. Simmons, D. Sun, D. Yuan and H.-C. Zhou, Inorg. Chem., 2009, 48, 5263; (k) X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness and M. Schröder, J. Am. Chem. Soc., 2009, 131, 2159.

- S. S. Han and W. A. Goddard, J. Am. Chem. Soc., 2007, 129, 8422; (b) K. L. Mulfort and J. T. Hupp, J. Am. Chem. Soc., 2007, 129, 9604; (c) D. Himsl, D. Wallacher and M. Hartmann, Angew. Chem., Int. Ed., 2009, 48, 4639; (d) S. Yang, X. Lin, A. J. Blake, K. M. Thomas, P. Hubberstey, N. R. Champness and M. Schröder, Chem. Commun., 2008, 6108.
- 6 (a) Y. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. C. Kravtsov, R. Luebke and M. Eddaoudi, *Angew. Chem., Int. Ed.*, 2007, 46, 3278; (b) D. F. Sava, V. C. Kravtsov, F. Nouar, L. Wojtas, J. F. Eubank and M. Eddaoudi, *J. Am. Chem. Soc.*, 2008, 130, 3768.
- 7 J.-Y. Hasegawa, M. Higuchi, Y. Hijikata and S. Kitagawa, *Chem. Mater.*, 2009, 21, 1829.
- 8 (a) O. Hübner, A. Glöss, M. Fichtner and W. Klopper, J. Phys. Chem. A, 2004, 108, 3019; (b) M. Wong, B. E. V. Kuiken, C. Buda and B. D. Dunietz, J. Phys. Chem. C, 2009, 113, 12571.
- 9 L. J. Mathias and C. G. Overberger, J. Org. Chem., 1980, 45, 1701.
- Microanalysis for MOF-645, [Zn₅(μ₃-OH)₂(L)₄(DMF)(H₂O)]. (DMF), calcd: C, 46.94; H, 3.06; N, 2.03%. Found: C, 46.1; H, 3.13; N, 2.02%. For MOF-646, [Zn₄(μ₄-O)(L)₃(DMF)₂]. (DMF)_{1.25}·(H₂O), calcd: C, 46.74; H, 3.67; N, 3.87%. Found: C, 46.54; H, 3.61; N, 4.26%.
- 11 Three oxygen atoms (O2, O3 and O5) of carboxylate linkers are disordered over two positions with fixed site occupancy factors of 0.5:0.5. Constraints on their displacement parameters were applied using EADP. See Fig. S1 in ESI for details.
- 12 M. O'Keeffe, M. A. Peskov, S. J. Ramsden and O. M. Yaghi, Acc. Chem. Res., 2008, 41, 1782.
- 13 See ESI for details.
- (a) H. Chun and H. Jung, *Inorg. Chem.*, 2009, 48, 417;
 (b) Y. Takashima, C. Bonneau, S. Furukawa, M. Kondo, R. Matsuda and S. Kitagawa, *Chem. Commun.*, 2010, 46, 4142.
- 15 M. Rzepka, P. Lamp and M. A. de la Casa-Lillo, J. Phys. Chem. B, 1998, 102, 10894.
- 16 The pore volume from the Ar isotherm is smaller than that from the N₂ isotherms. This indicates that the packing density of Ar in the pore should be lower than that of N₂. Indeed, estimated surface area based on the crystal structure (54% void space, 1260 m² g⁻¹) is almost the same as the Langmuir surface area from the N₂ isotherm (1250 m² g⁻¹).
- 17 P. I. Ravikovitch, D. Wei, W. T. Chueh, G. L. Haller and A. V. Neimark, J. Phys. Chem. B, 1997, 101, 3671.
- 18 J. L. C. Rowsell, A. R. Millward, K. S. Park and O. M. Yaghi, J. Am. Chem. Soc., 2004, 126, 5666.
- (a) M. Dincă and J. R. Long, J. Am. Chem. Soc., 2007, 129, 11172;
 (b) F. Nouar, J. F. Eubank, T. Bousquet, L. Wojtas, M. J. Zaworotko and M. Eddaoudi, J. Am. Chem. Soc., 2008, 130, 1833; (c) S. Ma and H.-C. Zhou, J. Am. Chem. Soc., 2006, 128, 11734; (d) B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher and K. M. Thomas, J. Am. Chem. Soc., 2008, 130, 6411.
- 20 O. K. Farha, K. L. Mulfort and J. T. Hupp, *Inorg. Chem.*, 2008, 47, 10223.
- 21 E. C. Spencer, J. A. K. Howard, G. J. McIntyre, J. L. C. Rowsell and O. M. Yaghi, *Chem. Commun.*, 2006, 278.