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The 15 3-periodic minimal nets of Beukemann & Klee [Z. Kristallogr. (1992),

201, 37±51] have been examined. Seven have collisions in barycentric

coordinates and are self-entangled. The other eight have natural tilings. Five

of these tilings are self-dual and the nets are the labyrinth nets of the P, G, D, H

and CLP minimal surfaces of genus 3. Twelve ways have been found for

subdividing a cube into smaller tiles without introducing new vertices. Duals of

such tilings with one vertex in the primitive cell have nets that are one of the

minimal nets. Minimal nets without collisions are uniform.

1. Introduction

This paper is the third in a series on the taxonomy of 3-peri-

odic tilings and nets. The ®rst two (Delgado-Friedrichs et al.,

2003a,b) papers dealt with vertex- and edge-transitive nets. In

this contribution, we discuss the minimal nets de®ned and

enumerated by Beukemann & Klee (1992).

We ®rst give a brief informal summary of de®nitions. In this

work, a tile is a closed ®gure made of vertices, edges and faces

such that at least two edges meet at each vertex, and two faces

meet at each edge. A tiling is a ®lling of space by tiles sharing

faces. Each tiling has a unique dual obtained by placing a

vertex in the original tile and connecting these new vertices by

edges passing through the faces of the old tiles. The new tiles

enclose the original vertices and the original tiling is the dual

of the dual.

We say that each tiling carries a net that is composed of the

set of its vertices and edges. Although the net of a tiling is

unique, the converse is not true; one can derive a new tiling

from a given tiling with the same net either by fusing pairs of

tiles (eliminating faces) or by dissecting tiles with more than

four vertices (adding faces). However, we have proposed that

there is often a unique natural tiling associated with a net. This

natural tiling has the property that the tiles are the smallest

possible (a) that preserve the full combinatorial symmetry of

the net and (b) whose faces are all strong rings (i.e. rings that

are not the sum of smaller rings).

Often the dual of a natural tiling is also a natural tiling, and

then we refer to the pairs of nets as natural duals. If the tiling

and its dual are identical, they are self-dual and, if they are

natural tilings, we say the nets are naturally self-dual (or

informally just self-dual).1

The transitivity pqrs of a tiling signi®es that there are p

kinds of vertex, q kinds of edge, r kinds of face and s kinds of

tile. The dual of a tiling with transitivity pqrs has transitivity

srqp.

If the edges of a repeat unit (i.e. primitive unit-cell

contents) of a 3-periodic net that connect to a vertex in the

uvw unit cell are joined to their partners connecting to

corresponding vertices in the �u�v �w unit cell, one obtains a

quotient graph (Chung et al., 1984) that may contain loops and/

or have more than one edge connecting the same pair of

vertices (see Fig. 1). If we now imagine the edges to be in¯ated

to rods of ®nite circumference, the quotient graph will

correspond to a handlebody of genus g. We ®nd it convenient

to refer to the genus of a net, de®ned in this way. If the v

vertices of the quotient graph are linked by the minimal

number (v ÿ 1) of edges to make a connected graph, one

obtains a spanning tree of the graph. The number of edges

required to complete the graph is the cyclomatic number,

which is equal to g. If the total number of edges in the quotient

graph is e then the cyclomatic number is g = e ÿ (v ÿ 1) =

1 + e ÿ v.

For 3-periodic tilings, the number of vertices, edges, faces

( f) and tiles (t) in the repeat unit are related by e ÿ v = f ÿ t

(Coxeter, 1973). As the dual tiling has f edges and t vertices, it

is a property of three-dimensional tilings that the genus of the

net of the dual tiling (1 + fÿ t) is the same as the genus (1 + eÿ
v) of the net of the original tiling (notice that this is not true in

two dimensions).

The concept of a minimal net was introduced by Beuke-

mann & Klee (1992); it has the minimum possible number of

vertices and edges in the repeat unit. For an n-periodic net, the

genus of the minimal net is n. Beukemann & Klee (1992)

showed that to enumerate the minimal nets it is suf®cient to

enumerate all the connected graphs of cyclomatic number n.

For n = 3, the number of such graphs is 15.

1 Thus the term `dual net' is to be construed to mean the net of the tiling dual
to the tiling of the original net. As a net has in®nitely many tilings (provided
that at least one exists), there are in®nitely many duals.



2. Nets with collisions and self-catenation

Nets with catenated rings occasionally occur in crystal chem-

istry (O'Keeffe, 1991; O'Keeffe et al., 2000). Such rings cannot

be faces of tiles, and in general there may be no natural tiling

associated with the net.

In analyzing the topology of nets, we ®nd it convenient to

work with barycentric coordinates (Delgado-Friedrichs &

O'Keeffe, 2003). However, there are certain kinds of net for

which two or more vertices have the same coordinates

(collide). We have not encountered such behavior in nets of

interest to crystal chemistry. Fig. 1(b) illustrates such a net

(one of the minimal nets of Beukemann & Klee).2 Consider

the red vertex placed, without loss of generality, at (0, 0, 0) (so

the eight red vertices shown are at the corners of a unit cell)

and the green vertex at (x, y, z). Take the z direction to be up

the page. Then the neighbors of the red vertex are at (1, 0, 0),

(ÿ1, 0, 0), (0, 1, 0), (0,ÿ1, 0) and (x, y, z). For the coordinates

to be barycentric these numbers must add up to (0, 0, 0), i.e.

x = y = z = 0 and the red and green vertices collide.

Of the 15 minimal 3-periodic nets of Beukemann & Klee

(1992), we ®nd that seven have collisions and that these are all

self-catenated. They all have 3-coordinated vertices with the

vertex on a single loop in the quotient graph [cf. the green

vertex in Fig. 1(d)]. We do not consider these structures any

further.

3. Minimal nets without collisions

The eight minimal nets without collisions are listed in Table 1

and tiles of their natural tilings are shown in Fig. 2. The nets

pcu, dia and srs with transitivity 1111 are regular nets and have

been so described before (Delgado-Friedrichs et al., 2003a).

As they are naturally self-dual, it is common to ®nd crystal

structures based on two or more of a given kind of net inter-

grown (Batten & Robson, 1998). The nets correspond to the

labyrinth systems of the periodic minimal surfaces (PMSs) P,

D and G, respectively (for desciptions of PMSs see e.g.

Karchner, 1989; Hyde & Ramsden, 2000). The net cds

(CdSO4) with transitivity 1221 is also self-dual and crystal

structures with intergrown nets with this topology have been

described (Delgado-Friedrichs et al., 2003c). This net is the

labyrinth system of the CLP PMS. The last naturally self-dual

net is that labeled hms with transitivity 2222; it is the labyrinth

graph of the H PMS. Examples of crystal structures based on

pairs of these nets intergrown have been given by Batten &

Robson (1998, x4.4.2).
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Figure 1
(a) A fragment of the dia structure. (b) A minimal net [2(3, 5)2 of
Beukemann & Klee (1992)]. (c) The quotient graph of dia. (d ) The
quotient graph of the net in (b).

Table 1
The minimal nets without collisions.

`BK' refers to the symbol of Beukemann & Klee (1992), `Coord.' refers to the
coordination number(s) of the vertices and `Trans.' is the transitivity described
in the text. In the vertex symbol (O'Keeffe & Hyde, 1996), Nn for each angle
means that n N-rings meet at that angle; `*' signi®es that there are no rings
contained in that angle.

Net BK Symmetry Coord. Trans. Dual Vertex symbols

pcu 1(6)1 Pm�3m 6 1111 self 4�4�4�4�4�4�4�4�4�4�4�4�*�*�*
hms 2(3, 5)1 P�6m2 5; 3 2222 self 6�6�6�62�62�62�62�62�62�*; 63�63�63

dia 2(4)1 Fd�3m 4 1111 self 62�62�62�62�62�62

cds 2(4)2 P42/mmc 4 1221 self 6�6�6�6�62�*
tfa 3(32, 4)1 I�4m2 4; 3 2211 dia 82�82�83�83�83�83; 84�84�84

tfc 3(32, 4)3 Cmmm 4; 3 2321 pcu 82�82�82�82�82�*; 8�83�83

srs 4(3)1 I4132 3 1111 self 105�105�105

ths 4(3)2 I41/amd 3 1211 dia 102�102�104

Figure 2
Natural tiles of the minimal nets without collisions (cf. Table 1).

2 This net is labeled 2(3, 4)2 by Beukemann & Klee (1992) in their Fig. 1(b);
this is clearly a misprint for 2(3, 5)2 as given in the caption for our Fig. 1



The one-to-one correspondence of the ®ve naturally self-

dual minimal nets and the labyrinth systems of the ®ve

minimal surfaces of genus 3 might have been expected [for the

genera of minimal surfaces see Fischer & Koch (1989); in that

work the G surface is labeled Y*].

The net labeled ths is familiar as the net of the Si atoms in

ThSi2. The dual of the natural tiling is a tiling that carries the

dia net, but this second tiling is not a natural tiling; indeed, as

shown in Fig. 3(a), the dual tiling is composed of trihedral tiles,

which are obtained by dividing the dia natural tile (Fig. 2) into

halves. The close relationship between ths and dia means that

structures often occur with two or more intergrown ths nets

(Batten & Robson, 1998; O'Keeffe et al., 2000) although not

all edges (i.e. not those parallel to the tetragonal c axis) of one

net penetrate rings of a second. Note that we can construct a

self-dual tiling of ths by bisecting the natural tiling as shown in

Fig. 3(b). One of the faces of the new tiles has 12 edges and is

not a ring; from the ®gure it should be clear that the face is the

sum of two 10-rings (the other two faces of the tile). The

transitivity of this new tiling is 1221.

The 3,4-coordinated net labeled tfa is intermediate between

dia and ths, and again the net of the dual to the natural tiling is

dia. The second 3,4-coordinated net is labeled tfc; the net of

the dual of its natural tiling is pcu. These nets with their lower

symmetry and mixed coordination are of lesser importance in

crystal chemistry.

For each of these nets, the shortest ring at each angle is the

same size and, in fact, is equal to 2v + 2. Wells (1977) attached

special interest to such nets, which he called uniform. Notice

however that the cds net also has 8-rings that serve as faces of

natural tiles (six of these 8-rings meet in each `90�' angle) and

which are therefore part of the set of essential rings (Delgado-

Friedrichs et al., 2003a).

4. Minimal tilings of the primitive cubic net (pcu)

A tiling by cubes carries the pcu minimal net. If we subdivide

the cube into smaller tiles, keeping the cube faces intact, we

will have tilings that carry the same net (for convenience we

call these minimal tilings). The duals of these tilings must be

tilings that carry a minimal net, so it is of interest to see

whether the nets generated in this way correspond to the

minimal nets described above. Fig. 4 shows 12 different such

dissections of a cube (including the case where the cube is left

intact). The duals of the tilings do indeed generate the eight

minimal nets of this paper; four are generated twice.

This result suggests that one could systematically

enumerate the dissections of a cube starting from the quotient

graphs of the minimal nets. These graphs consist conceptually

of two parts: a spanning tree, and three extra directed edges

(which may be loops) labeled x, y and z. Now let us label

opposite faces of a cube �x, �y and �z, and insert a spanning

tree of a minimal quotient graph inside. The edges of the

spanning tree go through faces of tiles in the dissected cube

and the labeled edges go to the corresponding labeled faces of

the cube. Thus for each vertex we have a dual tile arising from

the one or two incident edges of the spanning tree and the

directed edges. Fig. 5 shows the quotient graphs of the eight

minimal nets without collisions. It may be seen that for four of

the nets the spanning tree may be chosen in two distinct ways.

There is a one-to-one correspondence between these 12
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Figure 3
(a) The tiling dual to the natural tiling of ths. Compare with the natural
tile of dia (Fig. 2). (b) A self-dual tiling of ths. Compare with the natural
tile of ths (Fig. 2).

Figure 4
Tilings derived by dissecting a cube. The derived minimal net of the dual
tiling is indicated under each tiling (cf. Table 1).

Figure 5
The quotient graphs of the minimal nets. Black edges de®ne a spanning
tree, and the three red edges are labeled x, y and z. The graphs
correspond to the tilings of Fig. 4.



graphs and the 12 dissections of the cube, so we believe the

enumeration is complete.

This approach to minimal nets shows why there are no

tilings associated with the minimal nets with collisions. The

quotient graphs for these nets all have at least one trivalent

vertex with an incident loop. The dual tile associated with such

a vertex must have three faces, of which two are opposite faces

of a cube (associated with the incoming and outgoing part of

the incident loop). Clearly it is impossible to have a tile with

three faces in which two faces have no common edge.

The results above also suggest that dissections of basic

tilings might be a fruitful route to generating nets that can be

described as tilings. A dif®culty in attempting to enumerate

nets from quotient graphs is the explosive growth of number

of topologies with genus. Thus for 3-coordinated nets in

progressing from genus 3 with ®ve possibilities to genus 4,

even with restrictive assumptions, 269 possibilities have been

found (Bader et al., 1997); the majority of these are not

plausible topologies to serve as the basis for crystal structures.

5. Concluding remarks

Five of the eight nets described in this work are naturally self-

dual, yet among all known nets this is a very rare property;

indeed, we believe that the only vertex-transitive naturally

self-dual nets are the four (pcu, dia, srs and cds) described

here. We believe that, in most cases of crystal structures based

on interpenetrating nets, the net topology will be derived from

one of these four basic nets. Examples of interpenetrating

structures based on nets derived from the cds net have been

given by Delgado-Friedrichs et al. (2003c). A subsequent

paper in this series will be devoted to the nets of other self-

dual tilings.

This work was supported by the US National Science

Foundation (grant No. DMR 0103036).
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